As alternative to reshaping the input matrix manually, you can use OpenCV reshape function to achieve similar result with less code. Here is my working implementation of reducing colors count with K-Means method (in Java):
private final static int MAX_ITER = 10;
private final static int CLUSTERS = 16;
public static Mat colorMapKMeans(Mat img, int K, int maxIterations) {
Mat m = img.reshape(1, img.rows() * img.cols());
m.convertTo(m, CvType.CV_32F);
Mat bestLabels = new Mat(m.rows(), 1, CvType.CV_8U);
Mat centroids = new Mat(K, 1, CvType.CV_32F);
Core.kmeans(m, K, bestLabels,
new TermCriteria(TermCriteria.COUNT | TermCriteria.EPS, maxIterations, 1E-5),
1, Core.KMEANS_RANDOM_CENTERS, centroids);
List<Integer> idx = new ArrayList<>(m.rows());
Converters.Mat_to_vector_int(bestLabels, idx);
Mat imgMapped = new Mat(m.size(), m.type());
for(int i = 0; i < idx.size(); i++) {
Mat row = imgMapped.row(i);
centroids.row(idx.get(i)).copyTo(row);
}
return imgMapped.reshape(3, img.rows());
}
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
Highgui.imwrite("result.png",
colorMapKMeans(Highgui.imread(args[0], Highgui.CV_LOAD_IMAGE_COLOR),
CLUSTERS, MAX_ITER));
}
OpenCV reads image into 2 dimensional, 3 channel matrix. First call to reshape
- img.reshape(1, img.rows() * img.cols());
- essentially unrolls 3 channels into columns. In resulting matrix one row corresponds to one pixel of the input image, and 3 columns corresponds to RGB components.
After K-Means algorithm finished its work, and color mapping has been applied, we call reshape
again - imgMapped.reshape(3, img.rows())
, but now rolling columns back into channels, and reducing row numbers to the original image row number, thus getting back the original matrix format, but only with reduced colors.