835

How do I generate all the permutations of a list? For example:

permutations([])
[]

permutations([1])
[1]

permutations([1, 2])
[1, 2]
[2, 1]

permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
Mateen Ulhaq
  • 24,552
  • 19
  • 101
  • 135
Ricardo Reyes
  • 13,256
  • 4
  • 27
  • 19

40 Answers40

742

Use itertools.permutations from the standard library:

import itertools
list(itertools.permutations([1, 2, 3]))

Adapted from here is a demonstration of how itertools.permutations might be implemented:

def permutations(elements):
    if len(elements) <= 1:
        yield elements
        return
    for perm in permutations(elements[1:]):
        for i in range(len(elements)):
            # nb elements[0:1] works in both string and list contexts
            yield perm[:i] + elements[0:1] + perm[i:]

A couple of alternative approaches are listed in the documentation of itertools.permutations. Here's one:

def permutations(iterable, r=None):
    # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
    # permutations(range(3)) --> 012 021 102 120 201 210
    pool = tuple(iterable)
    n = len(pool)
    r = n if r is None else r
    if r > n:
        return
    indices = range(n)
    cycles = range(n, n-r, -1)
    yield tuple(pool[i] for i in indices[:r])
    while n:
        for i in reversed(range(r)):
            cycles[i] -= 1
            if cycles[i] == 0:
                indices[i:] = indices[i+1:] + indices[i:i+1]
                cycles[i] = n - i
            else:
                j = cycles[i]
                indices[i], indices[-j] = indices[-j], indices[i]
                yield tuple(pool[i] for i in indices[:r])
                break
        else:
            return

And another, based on itertools.product:

def permutations(iterable, r=None):
    pool = tuple(iterable)
    n = len(pool)
    r = n if r is None else r
    for indices in product(range(n), repeat=r):
        if len(set(indices)) == r:
            yield tuple(pool[i] for i in indices)
Mateen Ulhaq
  • 24,552
  • 19
  • 101
  • 135
Eli Bendersky
  • 263,248
  • 89
  • 350
  • 412
  • 27
    This and other recursive solutions have a potential hazard of eating up all the RAM if the permutated list is big enough – Boris Gorelik May 27 '09 at 07:05
  • 6
    They also reach the recursion limit (and die) with large lists – dbr Jun 09 '09 at 03:12
  • 73
    bgbg, dbr: Its using a generator, so the function itself won't eat up memory. Its left to you on how to consume the iterator returned by all_perms (say you could write each iteration to disk and not worry about memory). I know this post is old but I'm writing this for the benefit of everyone who reads it now. Also now, the best way would be to use itertools.permutations() as pointed out by many. – Jagtesh Chadha May 02 '11 at 12:40
  • 23
    Not just *a* generator. It's using nested generators, which each yield to the previous one up the call stack, in case that's not clear. It uses O(n) memory, which is good. – cdunn2001 Jul 19 '11 at 19:02
  • This solution yields 12 permutations instead of the normal 6, for [1, 2, 3]. – Eric O. Lebigot May 29 '12 at 13:07
  • 2
    PS: I fixed it, with `for i in range(len(elements))` instead of `for i in range(len(elements)+1)`. In fact, the singled-out element `elements[0:1]` can be in `len(elements)` different positions, in the result, not `len(elements)+1`. – Eric O. Lebigot May 29 '12 at 13:48
  • This solution is much faster than tzwenn's or mine, which is based on successively selecting the first element of the output permutation and recursively appending the permutations of the remaining elements (factor of 3 or 4 on elements). I am not yet sure why, though. – Eric O. Lebigot May 29 '12 at 14:01
  • PS: this solution is much faster because permutating N elements only requires the calculations of all permutations of N-1 elements *once* (compared to N times for our solutions). – Eric O. Lebigot Jul 05 '12 at 02:00
  • In python 2.7, this does not work for various variants of lists – holroy Nov 04 '15 at 19:06
  • Sadly we can't use a "size" parameter to only generate permutations of a give size. – Pol Dellaiera Dec 23 '16 at 06:45
  • `yield perm[:i] + elements[0:1] + perm[i:]` can be `yield perm[:i] + elements[0] + perm[i:]`? – Jack Jun 04 '18 at 08:45
  • list(set(itertools.permutations([1, 1, 2])), if you have repetitive elements in the list. – Aakash Saxena Oct 08 '18 at 13:40
  • @BorisGorelik . I am currently using itertools.permutations but it crashes my instance on AWS with it has more than 10 elements. How would one overcome this challenge? – Sade May 19 '21 at 12:52
372

For Python 2.6 onwards:

import itertools
itertools.permutations([1, 2, 3])

This returns as a generator. Use list(permutations(xs)) to return as a list.

Mateen Ulhaq
  • 24,552
  • 19
  • 101
  • 135
Brian
  • 116,865
  • 28
  • 107
  • 112
  • 30
    Notice that there exists an `r` parameter, e.g. `itertools.permutations([1,2,3], r=2)`, which will generate all possible permutations selecting 2 elements: `[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]` – toto_tico Aug 24 '17 at 08:49
349

First, import itertools:

import itertools

Permutation (order matters):

print(list(itertools.permutations([1,2,3,4], 2)))

[(1, 2), (1, 3), (1, 4),
(2, 1), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 4),
(4, 1), (4, 2), (4, 3)]

Combination (order does NOT matter):

print(list(itertools.combinations('123', 2)))

[('1', '2'), ('1', '3'), ('2', '3')]

Cartesian product (with several iterables):

print(list(itertools.product([1,2,3], [4,5,6])))

[(1, 4), (1, 5), (1, 6),
(2, 4), (2, 5), (2, 6),
(3, 4), (3, 5), (3, 6)]

Cartesian product (with one iterable and itself):

print(list(itertools.product([1,2], repeat=3)))

[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]
Innat
  • 16,113
  • 6
  • 53
  • 101
Bite code
  • 578,959
  • 113
  • 301
  • 329
65
def permutations(head, tail=''):
    if len(head) == 0:
        print(tail)
    else:
        for i in range(len(head)):
            permutations(head[:i] + head[i+1:], tail + head[i])

called as:

permutations('abc')
Roy Iacob
  • 412
  • 3
  • 13
kx2k
  • 685
  • 5
  • 3
  • 4
    Why print tail and then return None? Why not return tail instead? Why not return anything anyways? – bugmenot123 Nov 27 '17 at 11:48
  • @bugmenot123 you probably want all of the final tails rather than just tail, this is done easily by adding a `perms=[]` parameter to the function, appending to it on every `print` and having a final `return perms` – Alex Moore-Niemi Jan 03 '21 at 03:48
40
#!/usr/bin/env python

def perm(a, k=0):
   if k == len(a):
      print a
   else:
      for i in xrange(k, len(a)):
         a[k], a[i] = a[i] ,a[k]
         perm(a, k+1)
         a[k], a[i] = a[i], a[k]

perm([1,2,3])

Output:

[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 2, 1]
[3, 1, 2]

As I'm swapping the content of the list it's required a mutable sequence type as input. E.g. perm(list("ball")) will work and perm("ball") won't because you can't change a string.

This Python implementation is inspired by the algorithm presented in the book Computer Algorithms by Horowitz, Sahni and Rajasekeran.

nz_21
  • 6,140
  • 7
  • 34
  • 80
Silveira Neto
  • 481
  • 5
  • 3
24

This solution implements a generator, to avoid holding all the permutations on memory:

def permutations (orig_list):
    if not isinstance(orig_list, list):
        orig_list = list(orig_list)

    yield orig_list

    if len(orig_list) == 1:
        return

    for n in sorted(orig_list):
        new_list = orig_list[:]
        pos = new_list.index(n)
        del(new_list[pos])
        new_list.insert(0, n)
        for resto in permutations(new_list[1:]):
            if new_list[:1] + resto <> orig_list:
                yield new_list[:1] + resto
Ricardo Reyes
  • 13,256
  • 4
  • 27
  • 19
20

In a functional style

def addperm(x,l):
    return [ l[0:i] + [x] + l[i:]  for i in range(len(l)+1) ]

def perm(l):
    if len(l) == 0:
        return [[]]
    return [x for y in perm(l[1:]) for x in addperm(l[0],y) ]

print perm([ i for i in range(3)])

The result:

[[0, 1, 2], [1, 0, 2], [1, 2, 0], [0, 2, 1], [2, 0, 1], [2, 1, 0]]
Remi Guan
  • 21,506
  • 17
  • 64
  • 87
Paolo
  • 209
  • 2
  • 2
19

Regular implementation (no yield - will do everything in memory):

def getPermutations(array):
    if len(array) == 1:
        return [array]
    permutations = []
    for i in range(len(array)): 
        # get all perm's of subarray w/o current item
        perms = getPermutations(array[:i] + array[i+1:])  
        for p in perms:
            permutations.append([array[i], *p])
    return permutations

Yield implementation:

def getPermutations(array):
    if len(array) == 1:
        yield array
    else:
        for i in range(len(array)):
            perms = getPermutations(array[:i] + array[i+1:])
            for p in perms:
                yield [array[i], *p]

The basic idea is to go over all the elements in the array for the 1st position, and then in 2nd position go over all the rest of the elements without the chosen element for the 1st, etc. You can do this with recursion, where the stop criteria is getting to an array of 1 element - in which case you return that array.

enter image description here

Maverick Meerkat
  • 5,737
  • 3
  • 47
  • 66
  • This does not work for me _> *ValueError: operands could not be broadcast together with shapes (0,) (2,)* , for this line: `perms = getPermutations(array[:i] + array[i+1:])` – RK1 Feb 06 '20 at 15:29
  • @RK1 what was the input? – Maverick Meerkat Feb 06 '20 at 21:19
  • I'm passing in a `numpy` array _> `getPermutations(np.array([1, 2, 3]))`, I see it works for a list, just got confused as the func arg is `array` :) – RK1 Feb 07 '20 at 08:24
  • @RK1 glad it works :-) list is a keyword in python, so it's usually not a good idea to call your parameter a keyword, as it will "shadow" it. So I use the word array, as this is the actual functionality of the list that I'm using - their array like manner. I guess if I would write documentation I would clarify it. Also I believe that basic "interview" questions should be solved without external packages, like numpy. – Maverick Meerkat Feb 07 '20 at 09:02
  • Haha that's true, yeah was trying to use it with `numba` and got greedy with speed so tried to use it exclusively with `numpy` arrays – RK1 Feb 07 '20 at 09:21
  • Is that asterisk supposed to be there in this line? permutations.append([array[i], *p]) I removed it and the code ran fine. – dgundersen Jan 18 '21 at 18:44
  • @dgundersen yes it is crucial there. The colon is needed to unpack the array. Otherwise you will get a very messy result (an array of array of array....) – Maverick Meerkat Jan 18 '21 at 20:12
17

The following code is an in-place permutation of a given list, implemented as a generator. Since it only returns references to the list, the list should not be modified outside the generator. The solution is non-recursive, so uses low memory. Work well also with multiple copies of elements in the input list.

def permute_in_place(a):
    a.sort()
    yield list(a)

    if len(a) <= 1:
        return

    first = 0
    last = len(a)
    while 1:
        i = last - 1

        while 1:
            i = i - 1
            if a[i] < a[i+1]:
                j = last - 1
                while not (a[i] < a[j]):
                    j = j - 1
                a[i], a[j] = a[j], a[i] # swap the values
                r = a[i+1:last]
                r.reverse()
                a[i+1:last] = r
                yield list(a)
                break
            if i == first:
                a.reverse()
                return

if __name__ == '__main__':
    for n in range(5):
        for a in permute_in_place(range(1, n+1)):
            print a
        print

    for a in permute_in_place([0, 0, 1, 1, 1]):
        print a
    print
dbr
  • 165,801
  • 69
  • 278
  • 343
Ber
  • 40,356
  • 16
  • 72
  • 88
17

A quite obvious way in my opinion might be also:

def permutList(l):
    if not l:
            return [[]]
    res = []
    for e in l:
            temp = l[:]
            temp.remove(e)
            res.extend([[e] + r for r in permutList(temp)])

    return res
tzwenn
  • 303
  • 2
  • 6
13
list2Perm = [1, 2.0, 'three']
listPerm = [[a, b, c]
            for a in list2Perm
            for b in list2Perm
            for c in list2Perm
            if ( a != b and b != c and a != c )
            ]
print listPerm

Output:

[
    [1, 2.0, 'three'], 
    [1, 'three', 2.0], 
    [2.0, 1, 'three'], 
    [2.0, 'three', 1], 
    ['three', 1, 2.0], 
    ['three', 2.0, 1]
]
zmk
  • 504
  • 6
  • 6
  • 4
    While it technically produces the desired output, you're solving something that could be O(n lg n) in O(n^n) - "slightly" inefficient for large sets. – James Aug 22 '11 at 03:23
  • 6
    @James: I am a little confused by the O(n log n) that you give: the number of permutations is n!, which is already much larger than O(n log n); so, I can't see how a solution could be O(n log n). However, it is true that this solution is in O(n^n), which is much larger than n!, as is clear from Stirling's approximation. – Eric O. Lebigot May 29 '12 at 13:38
12

I used an algorithm based on the factorial number system- For a list of length n, you can assemble each permutation item by item, selecting from the items left at each stage. You have n choices for the first item, n-1 for the second, and only one for the last, so you can use the digits of a number in the factorial number system as the indices. This way the numbers 0 through n!-1 correspond to all possible permutations in lexicographic order.

from math import factorial
def permutations(l):
    permutations=[]
    length=len(l)
    for x in xrange(factorial(length)):
        available=list(l)
        newPermutation=[]
        for radix in xrange(length, 0, -1):
            placeValue=factorial(radix-1)
            index=x/placeValue
            newPermutation.append(available.pop(index))
            x-=index*placeValue
        permutations.append(newPermutation)
    return permutations

permutations(range(3))

output:

[[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]

This method is non-recursive, but it is slightly slower on my computer and xrange raises an error when n! is too large to be converted to a C long integer (n=13 for me). It was enough when I needed it, but it's no itertools.permutations by a long shot.

timeeeee
  • 121
  • 1
  • 3
  • 5
    Hi, welcome to Stack Overflow. Although posting the brute force method has its merits, if you don't think your solution is better than the accepted solution, you probably shouldn't post it (especially on an old question that already has so many answers). – Hannele Aug 08 '13 at 20:43
  • 7
    I was actually looking for a brute-force non-library approach, so thanks! – Jay Taylor Jul 01 '16 at 19:16
  • 2
    I found it useful too! – user3347814 Oct 11 '20 at 01:42
10

Note that this algorithm has an n factorial time complexity, where n is the length of the input list

Print the results on the run:

global result
result = [] 

def permutation(li):
if li == [] or li == None:
    return

if len(li) == 1:
    result.append(li[0])
    print result
    result.pop()
    return

for i in range(0,len(li)):
    result.append(li[i])
    permutation(li[:i] + li[i+1:])
    result.pop()    

Example:

permutation([1,2,3])

Output:

[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
Chen Xie
  • 3,849
  • 8
  • 27
  • 46
8

One can indeed iterate over the first element of each permutation, as in tzwenn's answer. It is however more efficient to write this solution this way:

def all_perms(elements):
    if len(elements) <= 1:
        yield elements  # Only permutation possible = no permutation
    else:
        # Iteration over the first element in the result permutation:
        for (index, first_elmt) in enumerate(elements):
            other_elmts = elements[:index]+elements[index+1:]
            for permutation in all_perms(other_elmts): 
                yield [first_elmt] + permutation

This solution is about 30 % faster, apparently thanks to the recursion ending at len(elements) <= 1 instead of 0. It is also much more memory-efficient, as it uses a generator function (through yield), like in Riccardo Reyes's solution.

Eric O. Lebigot
  • 91,433
  • 48
  • 218
  • 260
7

This is inspired by the Haskell implementation using list comprehension:

def permutation(list):
    if len(list) == 0:
        return [[]]
    else:
        return [[x] + ys for x in list for ys in permutation(delete(list, x))]

def delete(list, item):
    lc = list[:]
    lc.remove(item)
    return lc
piggybox
  • 1,689
  • 1
  • 15
  • 19
6

For performance, a numpy solution inspired by Knuth, (p22) :

from numpy import empty, uint8
from math import factorial

def perms(n):
    f = 1
    p = empty((2*n-1, factorial(n)), uint8)
    for i in range(n):
        p[i, :f] = i
        p[i+1:2*i+1, :f] = p[:i, :f]  # constitution de blocs
        for j in range(i):
            p[:i+1, f*(j+1):f*(j+2)] = p[j+1:j+i+2, :f]  # copie de blocs
        f = f*(i+1)
    return p[:n, :]

Copying large blocs of memory saves time - it's 20x faster than list(itertools.permutations(range(n)) :

In [1]: %timeit -n10 list(permutations(range(10)))
10 loops, best of 3: 815 ms per loop

In [2]: %timeit -n100 perms(10) 
100 loops, best of 3: 40 ms per loop
ali_m
  • 71,714
  • 23
  • 223
  • 298
B. M.
  • 18,243
  • 2
  • 35
  • 54
5

Disclaimer: shameless plug by package author. :)

The trotter package is different from most implementations in that it generates pseudo lists that don't actually contain permutations but rather describe mappings between permutations and respective positions in an ordering, making it possible to work with very large 'lists' of permutations, as shown in this demo which performs pretty instantaneous operations and look-ups in a pseudo-list 'containing' all the permutations of the letters in the alphabet, without using more memory or processing than a typical web page.

In any case, to generate a list of permutations, we can do the following.

import trotter

my_permutations = trotter.Permutations(3, [1, 2, 3])

print(my_permutations)

for p in my_permutations:
    print(p)

Output:

A pseudo-list containing 6 3-permutations of [1, 2, 3].
[1, 2, 3]
[1, 3, 2]
[3, 1, 2]
[3, 2, 1]
[2, 3, 1]
[2, 1, 3]
Richard Ambler
  • 4,816
  • 2
  • 21
  • 38
  • Your package have a limit between 400 - 500 elements. – ecdani Jun 19 '22 at 18:06
  • @ecdani Thanks for your interest in this library! If each atom in the Milky Way galaxy spontaneously turned into a new Milky Way galaxy, and each of the new atoms did that again, we still wouldn't have as many atoms as there are permutations of 500 elements. Having said that, if you up your system's maximum recursion level a bit, the library can easily represent permutations of 1,000 or more elements, and searching and lookup are still pretty instantaneous. If you like, post an issue at the [trotter repository page](https://github.com/ram6ler/python-trotter/issues). – Richard Ambler Jun 25 '22 at 15:19
5

If you don't want to use the builtin methods such as:

import itertools
list(itertools.permutations([1, 2, 3]))

you can implement permute function yourself

from collections.abc import Iterable


def permute(iterable: Iterable[str]) -> set[str]:
    perms = set()

    if len(iterable) == 1:
        return {*iterable}

    for index, char in enumerate(iterable):
        perms.update([char + perm for perm in permute(iterable[:index] + iterable[index + 1:])])

    return perms


if __name__ == '__main__':
    print(permute('abc'))
    # {'bca', 'abc', 'cab', 'acb', 'cba', 'bac'}
    print(permute(['1', '2', '3']))
    # {'123', '312', '132', '321', '213', '231'}
Alon Barad
  • 1,491
  • 1
  • 13
  • 26
4

The beauty of recursion:

>>> import copy
>>> def perm(prefix,rest):
...      for e in rest:
...              new_rest=copy.copy(rest)
...              new_prefix=copy.copy(prefix)
...              new_prefix.append(e)
...              new_rest.remove(e)
...              if len(new_rest) == 0:
...                      print new_prefix + new_rest
...                      continue
...              perm(new_prefix,new_rest)
... 
>>> perm([],['a','b','c','d'])
['a', 'b', 'c', 'd']
['a', 'b', 'd', 'c']
['a', 'c', 'b', 'd']
['a', 'c', 'd', 'b']
['a', 'd', 'b', 'c']
['a', 'd', 'c', 'b']
['b', 'a', 'c', 'd']
['b', 'a', 'd', 'c']
['b', 'c', 'a', 'd']
['b', 'c', 'd', 'a']
['b', 'd', 'a', 'c']
['b', 'd', 'c', 'a']
['c', 'a', 'b', 'd']
['c', 'a', 'd', 'b']
['c', 'b', 'a', 'd']
['c', 'b', 'd', 'a']
['c', 'd', 'a', 'b']
['c', 'd', 'b', 'a']
['d', 'a', 'b', 'c']
['d', 'a', 'c', 'b']
['d', 'b', 'a', 'c']
['d', 'b', 'c', 'a']
['d', 'c', 'a', 'b']
['d', 'c', 'b', 'a']
darxtrix
  • 2,032
  • 2
  • 23
  • 30
4

ANOTHER APPROACH (without libs)

def permutation(input):
    if len(input) == 1:
        return input if isinstance(input, list) else [input]

    result = []
    for i in range(len(input)):
        first = input[i]
        rest = input[:i] + input[i + 1:]
        rest_permutation = permutation(rest)
        for p in rest_permutation:
            result.append(first + p)
    return result

Input can be a string or a list

print(permutation('abcd'))
print(permutation(['a', 'b', 'c', 'd']))
Tatsu
  • 1,743
  • 16
  • 15
3
from __future__ import print_function

def perm(n):
    p = []
    for i in range(0,n+1):
        p.append(i)
    while True:
        for i in range(1,n+1):
            print(p[i], end=' ')
        print("")
        i = n - 1
        found = 0
        while (not found and i>0):
            if p[i]<p[i+1]:
                found = 1
            else:
                i = i - 1
        k = n
        while p[i]>p[k]:
            k = k - 1
        aux = p[i]
        p[i] = p[k]
        p[k] = aux
        for j in range(1,(n-i)/2+1):
            aux = p[i+j]
            p[i+j] = p[n-j+1]
            p[n-j+1] = aux
        if not found:
            break

perm(5)
Jared
  • 25,627
  • 7
  • 56
  • 61
Adrian Statescu
  • 89
  • 1
  • 1
  • 7
3

Here is an algorithm that works on a list without creating new intermediate lists similar to Ber's solution at https://stackoverflow.com/a/108651/184528.

def permute(xs, low=0):
    if low + 1 >= len(xs):
        yield xs
    else:
        for p in permute(xs, low + 1):
            yield p        
        for i in range(low + 1, len(xs)):        
            xs[low], xs[i] = xs[i], xs[low]
            for p in permute(xs, low + 1):
                yield p        
            xs[low], xs[i] = xs[i], xs[low]

for p in permute([1, 2, 3, 4]):
    print p

You can try the code out for yourself here: http://repl.it/J9v

Community
  • 1
  • 1
cdiggins
  • 17,602
  • 7
  • 105
  • 102
3

This algorithm is the most effective one, it avoids of array passing and manipulation in recursive calls, works in Python 2, 3:

def permute(items):
    length = len(items)
    def inner(ix=[]):
        do_yield = len(ix) == length - 1
        for i in range(0, length):
            if i in ix: #avoid duplicates
                continue
            if do_yield:
                yield tuple([items[y] for y in ix + [i]])
            else:
                for p in inner(ix + [i]):
                    yield p
    return inner()

Usage:

for p in permute((1,2,3)):
    print(p)

(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)
Cmyker
  • 2,318
  • 1
  • 26
  • 29
3
def pzip(c, seq):
    result = []
    for item in seq:
        for i in range(len(item)+1):
            result.append(item[i:]+c+item[:i])
    return result


def perm(line):
    seq = [c for c in line]
    if len(seq) <=1 :
        return seq
    else:
        return pzip(seq[0], perm(seq[1:]))
3

Generate all possible permutations

I'm using python3.4:

def calcperm(arr, size):
    result = set([()])
    for dummy_idx in range(size):
        temp = set()
        for dummy_lst in result:
            for dummy_outcome in arr:
                if dummy_outcome not in dummy_lst:
                    new_seq = list(dummy_lst)
                    new_seq.append(dummy_outcome)
                    temp.add(tuple(new_seq))
        result = temp
    return result

Test Cases:

lst = [1, 2, 3, 4]
#lst = ["yellow", "magenta", "white", "blue"]
seq = 2
final = calcperm(lst, seq)
print(len(final))
print(final)
  • This (so far) is the most understandable solution for me (non-math head). I can list chars I want to permutate and this works! What is the logic to add duplicates characters to permutations? **Example:** `def calcperm(arr, size, dupes):` where `dupes` are the allowed numbers of duplicates to allow for each permutation. – SeaDude Nov 10 '21 at 04:35
2

I see a lot of iteration going on inside these recursive functions, not exactly pure recursion...

so for those of you who cannot abide by even a single loop, here's a gross, totally unnecessary fully recursive solution

def all_insert(x, e, i=0):
    return [x[0:i]+[e]+x[i:]] + all_insert(x,e,i+1) if i<len(x)+1 else []

def for_each(X, e):
    return all_insert(X[0], e) + for_each(X[1:],e) if X else []

def permute(x):
    return [x] if len(x) < 2 else for_each( permute(x[1:]) , x[0])


perms = permute([1,2,3])
Karo Castro-Wunsch
  • 198
  • 1
  • 2
  • 7
2

To save you folks possible hours of searching and experimenting, here's the non-recursive permutaions solution in Python which also works with Numba (as of v. 0.41):

@numba.njit()
def permutations(A, k):
    r = [[i for i in range(0)]]
    for i in range(k):
        r = [[a] + b for a in A for b in r if (a in b)==False]
    return r
permutations([1,2,3],3)
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

To give an impression about performance:

%timeit permutations(np.arange(5),5)

243 µs ± 11.1 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
time: 406 ms

%timeit list(itertools.permutations(np.arange(5),5))
15.9 µs ± 8.61 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
time: 12.9 s

So use this version only if you have to call it from njitted function, otherwise prefer itertools implementation.

Anatoly Alekseev
  • 2,011
  • 24
  • 27
2

Anyway we could use sympy library , also support for multiset permutations

import sympy
from sympy.utilities.iterables import multiset_permutations
t = [1,2,3]
p = list(multiset_permutations(t))
print(p)

# [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

Answer is highly inspired by Get all permutations of a numpy array

1

Another solution:

def permutation(flag, k =1 ):
    N = len(flag)
    for i in xrange(0, N):
        if flag[i] != 0:
            continue
        flag[i] = k 
        if k == N:
            print flag
        permutation(flag, k+1)
        flag[i] = 0

permutation([0, 0, 0])
anhldbk
  • 4,559
  • 5
  • 29
  • 37
  • NameError: name 'xrange' is not defined – Pathros Apr 04 '21 at 20:20
  • @Pathros well, the code above is for Python 2. For Python 3, please use `range()`. See https://stackoverflow.com/questions/17192158/nameerror-global-name-xrange-is-not-defined-in-python-3 – anhldbk Apr 06 '21 at 10:13
1

This is the asymptotically optimal way O(n*n!) of generating permutations after initial sorting.

There are n! permutations at most and hasNextPermutation(..) runs in O(n) time complexity

In 3 steps,

  1. Find largest j such that a[j] can be increased
  2. Increase a[j] by smallest feasible amount
  3. Find lexicogrpahically least way to extend the new a[0..j]
'''
Lexicographic permutation generation

consider example array state of [1,5,6,4,3,2] for sorted [1,2,3,4,5,6]
after 56432(treat as number) ->nothing larger than 6432(using 6,4,3,2) beginning with 5
so 6 is next larger and 2345(least using numbers other than 6)
so [1, 6,2,3,4,5]
'''
def hasNextPermutation(array, len):
    ' Base Condition '
    if(len ==1):
        return False
    '''
    Set j = last-2 and find first j such that a[j] < a[j+1]
    If no such j(j==-1) then we have visited all permutations
    after this step a[j+1]>=..>=a[len-1] and a[j]<a[j+1]

    a[j]=5 or j=1, 6>5>4>3>2
    '''
    j = len -2
    while (j >= 0 and array[j] >= array[j + 1]):
        j= j-1
    if(j==-1):
        return False
    # print(f"After step 2 for j {j}  {array}")
    '''
    decrease l (from n-1 to j) repeatedly until a[j]<a[l]
    Then swap a[j], a[l]
    a[l] is the smallest element > a[j] that can follow a[l]...a[j-1] in permutation
    before swap we have a[j+1]>=..>=a[l-1]>=a[l]>a[j]>=a[l+1]>=..>=a[len-1]
    after swap -> a[j+1]>=..>=a[l-1]>=a[j]>a[l]>=a[l+1]>=..>=a[len-1]

    a[l]=6 or l=2, j=1 just before swap [1, 5, 6, 4, 3, 2] 
    after swap [1, 6, 5, 4, 3, 2] a[l]=5, a[j]=6
    '''
    l = len -1
    while(array[j] >= array[l]):
        l = l-1
    # print(f"After step 3 for l={l}, j={j} before swap {array}")
    array[j], array[l] = array[l], array[j]
    # print(f"After step 3 for l={l} j={j} after swap {array}")
    '''
    Reverse a[j+1...len-1](both inclusive)

    after reversing [1, 6, 2, 3, 4, 5]
    '''
    array[j+1:len] = reversed(array[j+1:len])
    # print(f"After step 4 reversing {array}")
    return True

array = [1,2,4,4,5]
array.sort()
len = len(array)
count =1
print(array)
'''
The algorithm visits every permutation in lexicographic order
generating one by one
'''
while(hasNextPermutation(array, len)):
    print(array)
    count = count +1
# The number of permutations will be n! if no duplicates are present, else less than that
# [1,4,3,3,2] -> 5!/2!=60
print(f"Number of permutations: {count}")


Bhaskar13
  • 191
  • 4
  • 14
  • Welcome to Stack Overflow. Code dumps without any explanation are rarely helpful. Stack Overflow is about learning, not providing snippets to blindly copy and paste. Please [edit] your question and explain how it answers the specific question being asked. See [answer]. This is especially important when answering old questions (this one is over 12 old) with existing answers (this one has _40_). How does this answer improve upon what's already here? Note also that the question is about _Python_. How does an answer in Java help? – ChrisGPT was on strike Apr 16 '21 at 14:08
0

My Python Solution:

def permutes(input,offset):
    if( len(input) == offset ):
        return [''.join(input)]

    result=[]        
    for i in range( offset, len(input) ):
         input[offset], input[i] = input[i], input[offset]
         result = result + permutes(input,offset+1)
         input[offset], input[i] = input[i], input[offset]
    return result

# input is a "string"
# return value is a list of strings
def permutations(input):
    return permutes( list(input), 0 )

# Main Program
print( permutations("wxyz") )
abelenky
  • 63,815
  • 23
  • 109
  • 159
0
def permutation(word, first_char=None):
    if word == None or len(word) == 0: return []
    if len(word) == 1: return [word]

    result = []
    first_char = word[0]
    for sub_word in permutation(word[1:], first_char):
        result += insert(first_char, sub_word)
    return sorted(result)

def insert(ch, sub_word):
    arr = [ch + sub_word]
    for i in range(len(sub_word)):
        arr.append(sub_word[i:] + ch + sub_word[:i])
    return arr


assert permutation(None) == []
assert permutation('') == []
assert permutation('1')  == ['1']
assert permutation('12') == ['12', '21']

print permutation('abc')

Output: ['abc', 'acb', 'bac', 'bca', 'cab', 'cba']

0

Using Counter

from collections import Counter

def permutations(nums):
    ans = [[]]
    cache = Counter(nums)

    for idx, x in enumerate(nums):
        result = []
        for items in ans:
            cache1 = Counter(items)
            for id, n in enumerate(nums):
                if cache[n] != cache1[n] and items + [n] not in result:
                    result.append(items + [n])

        ans = result
    return ans
permutations([1, 2, 2])
> [[1, 2, 2], [2, 1, 2], [2, 2, 1]]

Hello.World
  • 720
  • 8
  • 22
0
def permuteArray (arr):

    arraySize = len(arr)

    permutedList = []

    if arraySize == 1:
        return [arr]

    i = 0

    for item in arr:

        for elem in permuteArray(arr[:i] + arr[i + 1:]):
            permutedList.append([item] + elem)

        i = i + 1    

    return permutedList

I intended to not exhaust every possibility in a new line to make it somewhat unique.

0
from typing import List
import time, random

def measure_time(func):
    def wrapper_time(*args, **kwargs):
        start_time = time.perf_counter()
        res = func(*args, **kwargs)
        end_time = time.perf_counter()
        return res, end_time - start_time

    return wrapper_time


class Solution:
    def permute(self, nums: List[int], method: int = 1) -> List[List[int]]:
        perms = []
        perm = []
        if method == 1:
            _, time_perm = self._permute_recur(nums, 0, len(nums) - 1, perms)
        elif method == 2:
            _, time_perm = self._permute_recur_agian(nums, perm, perms)
            print(perm)
        return perms, time_perm

    @measure_time
    def _permute_recur(self, nums: List[int], l: int, r: int, perms: List[List[int]]):
        # base case
        if l == r:
            perms.append(nums.copy())

        for i in range(l, r + 1):
            nums[l], nums[i] = nums[i], nums[l]
            self._permute_recur(nums, l + 1, r , perms)
            nums[l], nums[i] = nums[i], nums[l]

    @measure_time
    def _permute_recur_agian(self, nums: List[int], perm: List[int], perms_list: List[List[int]]):
        """
        The idea is similar to nestedForLoops visualized as a recursion tree.
        """
        if nums:
            for i in range(len(nums)):
                # perm.append(nums[i])  mistake, perm will be filled with all nums's elements.
                # Method1 perm_copy = copy.deepcopy(perm)
                # Method2 add in the parameter list using + (not in place)
                # caveat: list.append is in-place , which is useful for operating on global element perms_list
                # Note that:
                # perms_list pass by reference. shallow copy
                # perm + [nums[i]] pass by value instead of reference.
                self._permute_recur_agian(nums[:i] + nums[i+1:], perm + [nums[i]], perms_list)
        else:
            # Arrive at the last loop, i.e. leaf of the recursion tree.
            perms_list.append(perm)



if __name__ == "__main__":
    array = [random.randint(-10, 10) for _ in range(3)]
    sol = Solution()
    # perms, time_perm = sol.permute(array, 1)
    perms2, time_perm2 = sol.permute(array, 2)
    print(perms2)
    # print(perms, perms2)
    # print(time_perm, time_perm2)
```
Harvey Mao
  • 11
  • 1
0

in case anyone fancies this ugly one-liner (works only for strings though):

def p(a):
    return a if len(a) == 1 else [[a[i], *j] for i in range(len(a)) for j in p(a[:i] + a[i + 1:])]
Michael Hodel
  • 2,845
  • 1
  • 5
  • 10
0
def permutate(l):
    for i, x in enumerate(l):
        for y in l[i + 1:]:
            yield x, y


if __name__ == '__main__':
    print(list(permutate(list('abcd'))))
    print(list(permutate([1, 2, 3, 4])))

#[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')]
#[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
0script0
  • 471
  • 5
  • 11
0

Solving with recursion, iterate through elements, take i'th element, and ask yourself: 'What is the permutation of rest of items` till no more element left.

I explained the solution here: https://www.youtube.com/watch?v=_7GE7psS2b4

class Solution:
    def permute(self,nums:List[int])->List[List[int]]:
        res=[]
        def dfs(nums,path):
            if len(nums)==0:
                res.append(path)
            for i in range(len(nums)):
                dfs(nums[:i]+nums[i+1:],path+[nums[i]])
        dfs(nums,[])
        return res
Yilmaz
  • 35,338
  • 10
  • 157
  • 202
0

In case the user wants to keep all permutations in a list, the following code can be used:

def get_permutations(nums, p_list=[], temp_items=[]):
    if not nums:
        return
    elif len(nums) == 1:
        new_items = temp_items+[nums[0]]
        p_list.append(new_items)
        return
    else:
        for i in range(len(nums)):
            temp_nums = nums[:i]+nums[i+1:]
            new_temp_items = temp_items + [nums[i]]
            get_permutations(temp_nums, p_list, new_temp_items)

nums = [1,2,3]
p_list = []

get_permutations(nums, p_list)

Gorkem Polat
  • 94
  • 2
  • 11
-3

for Python we can use itertools and import both permutations and combinations to solve your problem

from itertools import product, permutations
A = ([1,2,3])
print (list(permutations(sorted(A),2)))
Pang
  • 9,564
  • 146
  • 81
  • 122
Bharatwaja
  • 843
  • 6
  • 5