Casting pointers to void*
has its importance since way back in C days.
Most suitable place is inside the memory manager of Operating System. It has to store all the pointer and the object of what you create. By storing it in void* they generalize it to store any object on to the memory manager data structure which could be heap/B+Tree
or simple arraylist
.
For simplicity take example of creating a list
of generic items(List contains items of completely different classes). That would be possible only using void*
.
standard says that dynamic_cast should return null for illegal type casting and standard also guarantees that any pointer should be able to type cast it to void* and back from it with only exception of function pointers.
Normal application level practical usage is very less for void*
typecasting but it is used extensively in low level/embedded systems.
Normally you would want to use reinterpret_cast for low level stuff, like in 8086 it is used to offset pointer of same base to get the address but not restricted to this.
Edit:
Standard says that you can convert any pointer to void*
even with dynamic_cast<>
but it no where states that you can not convert the void*
back to the object.
For most usage, its a one way street but there are some unavoidable usage.
It just says that dynamic_cast<>
needs type information for converting it back to the requested type.
There are many API's that require you to pass void*
to some object eg. java/Jni Code passes the object as void*
.
Without type info you cannot do the casting.If you are confident enough that type requested is correct you can ask compiler to do the dynmaic_cast<>
with a trick.
Look at this code:
class Base_Class {public : virtual void dummy() { cout<<"Base\n";} };
class Derived_Class: public Base_Class { int a; public: void dummy() { cout<<"Derived\n";} };
class MostDerivedObject : public Derived_Class {int b; public: void dummy() { cout<<"Most\n";} };
class AnotherMostDerivedObject : public Derived_Class {int c; public: void dummy() { cout<<"AnotherMost\n";} };
int main () {
try {
Base_Class * ptr_a = new Derived_Class;
Base_Class * ptr_b = new MostDerivedObject;
Derived_Class * ptr_c,*ptr_d;
ptr_c = dynamic_cast< Derived_Class *>(ptr_a);
ptr_d = dynamic_cast< Derived_Class *>(ptr_b);
void* testDerived = dynamic_cast<void*>(ptr_c);
void* testMost = dynamic_cast<void*>(ptr_d);
Base_Class* tptrDerived = dynamic_cast<Derived_Class*>(static_cast<Base_Class*>(testDerived));
tptrDerived->dummy();
Base_Class* tptrMost = dynamic_cast<Derived_Class*>(static_cast<Base_Class*>(testMost));
tptrMost->dummy();
//tptrMost = dynamic_cast<AnotherMostDerivedObject*>(static_cast<Base_Class*>(testMost));
//tptrMost->dummy(); //fails
} catch (exception& my_ex) {cout << "Exception: " << my_ex.what();}
system("pause");
return 0;
}
Please correct me if this is not correct in any way.