After playing around with this I have a decent answer that works for Windows if the current graphics configuration is using ARGB integer packed rasters.
What I do is create the compatible BufferedImage first, then I manually convert my RGB bytes array to an ARGB int array. Then I get the Raster from the compatible BufferedImage and write my ARGB ints into it. This is much faster.
I also have a class that checks if the compatible BufferedImage is in the format I expect, if it isn't it defaults to the older slower approach.
Here is the class. Hope it helps you.
/**
* This class can read chunks of RGB image data out of a file and return a BufferedImage.
* It may use an optimized technique for loading images that relies on assumptions about the
* default image format on Windows.
*/
public class RGBImageLoader
{
private byte[] tempBuffer_;
private boolean fastLoading_;
public RGBImageLoader()
{
fastLoading_ = canUseFastLoadingTechnique();
}
private boolean canUseFastLoadingTechnique()
{
// Create an image that's compatible with the screen
GraphicsConfiguration gc = GraphicsEnvironment.getLocalGraphicsEnvironment().getDefaultScreenDevice().getDefaultConfiguration();
BufferedImage image = gc.createCompatibleImage(100, 100, Transparency.TRANSLUCENT);
// On windows this should be an ARGB integer packed raster. If it is then we can
// use our optimization technique
if(image.getType() != BufferedImage.TYPE_INT_ARGB)
return false;
WritableRaster raster = image.getRaster();
if(!(raster instanceof IntegerInterleavedRaster))
return false;
if(!(raster.getDataBuffer() instanceof DataBufferInt))
return false;
if(!(image.getColorModel() instanceof DirectColorModel))
return false;
DirectColorModel colorModel = (DirectColorModel) image.getColorModel();
if(!(colorModel.getColorSpace() instanceof ICC_ColorSpace) ||
colorModel.getNumComponents() != 4 ||
colorModel.getAlphaMask() != 0xff000000 ||
colorModel.getRedMask() != 0xff0000 ||
colorModel.getGreenMask() != 0xff00 ||
colorModel.getBlueMask() != 0xff)
return false;
if(raster.getNumBands() != 4 ||
raster.getNumDataElements() != 1 ||
!(raster.getSampleModel() instanceof SinglePixelPackedSampleModel))
return false;
return true;
}
public BufferedImage loadImage(File file, int width, int height, long imageOffset) throws IOException
{
if(fastLoading_)
return loadImageUsingFastTechnique(file, width, height, imageOffset);
else
return loadImageUsingCompatibleTechnique(file, width, height, imageOffset);
}
private BufferedImage loadImageUsingFastTechnique(File file, int width, int height, long imageOffset) throws IOException
{
int sizeBytes = width * height * 3;
// Make sure buffer is big enough
if(tempBuffer_ == null || tempBuffer_.length < sizeBytes)
tempBuffer_ = new byte[sizeBytes];
RandomAccessFile raf = null;
try
{
raf = new RandomAccessFile(file, "r");
raf.seek(imageOffset);
int bytesRead = raf.read(tempBuffer_, 0, sizeBytes);
if (bytesRead != sizeBytes)
throw new IOException("Invalid byte count. Should be " + sizeBytes + " not " + bytesRead);
GraphicsConfiguration gc = GraphicsEnvironment.getLocalGraphicsEnvironment().getDefaultScreenDevice().getDefaultConfiguration();
BufferedImage image = gc.createCompatibleImage(width, height, Transparency.TRANSLUCENT);
WritableRaster raster = image.getRaster();
DataBufferInt dataBuffer = (DataBufferInt) raster.getDataBuffer();
addAlphaChannel(tempBuffer_, sizeBytes, dataBuffer.getData());
return image;
}
finally
{
try
{
if(raf != null)
raf.close();
}
catch(Exception ex)
{
}
}
}
private BufferedImage loadImageUsingCompatibleTechnique(File file, int width, int height, long imageOffset) throws IOException
{
int sizeBytes = width * height * 3;
RandomAccessFile raf = null;
try
{
raf = new RandomAccessFile(file, "r");
// Lets navigate to the offset
raf.seek(imageOffset);
DataBufferByte dataBuffer = new DataBufferByte(sizeBytes);
byte[] bytes = dataBuffer.getData();
int bytesRead = raf.read(bytes, 0, sizeBytes);
if (bytesRead != sizeBytes)
throw new IOException("Invalid byte count. Should be " + sizeBytes + " not " + bytesRead);
WritableRaster raster = Raster.createInterleavedRaster(dataBuffer, // dataBuffer
width, // width
height, // height
width * 3, // scanlineStride
3, // pixelStride
new int[]{0, 1, 2}, // bandOffsets
null); // location
ColorModel colorModel = new ComponentColorModel(ColorSpace.getInstance(ColorSpace.CS_sRGB), // ColorSpace
new int[]{8, 8, 8}, // bits
false, // hasAlpha
false, // isPreMultiplied
ComponentColorModel.OPAQUE, DataBuffer.TYPE_BYTE);
BufferedImage loadImage = new BufferedImage(colorModel, raster, false, null);
// Convert it into a buffered image that's compatible with the current screen.
// Not ideal creating this image twice....
BufferedImage image = createCompatibleImage(loadImage);
return image;
}
finally
{
try
{
if(raf != null)
raf.close();
}
catch(Exception ex)
{
}
}
}
private BufferedImage createCompatibleImage(BufferedImage image)
{
GraphicsConfiguration gc = GraphicsEnvironment.getLocalGraphicsEnvironment().getDefaultScreenDevice().getDefaultConfiguration();
BufferedImage newImage = gc.createCompatibleImage(image.getWidth(), image.getHeight(), Transparency.TRANSLUCENT);
Graphics2D g = newImage.createGraphics();
g.drawImage(image, 0, 0, null);
g.dispose();
return newImage;
}
private void addAlphaChannel(byte[] rgbBytes, int bytesLen, int[] argbInts)
{
for(int i=0, j=0; i<bytesLen; i+=3, j++)
{
argbInts[j] = ((byte) 0xff) << 24 | // Alpha
(rgbBytes[i] << 16) & (0xff0000) | // Red
(rgbBytes[i+1] << 8) & (0xff00) | // Green
(rgbBytes[i+2]) & (0xff); // Blue
}
}
}