I'm trying to construct an np.array
by sampling from a python generator, that yields one row of the array per invocation of next
. Here is some sample code:
import numpy as np
data = np.eye(9)
labels = np.array([0,0,0,1,1,1,2,2,2])
def extract_one_class(X,labels,y):
""" Take an array of data X, a column vector array of labels, and one particular label y. Return an array of all instances in X that have label y """
return X[np.nonzero(labels[:] == y)[0],:]
def generate_points(data, labels, size):
""" Generate and return 'size' pairs of points drawn from different classes """
label_alphabet = np.unique(labels)
assert(label_alphabet.size > 1)
for useless in xrange(size):
shuffle(label_alphabet)
first_class = extract_one_class(data,labels,label_alphabet[0])
second_class = extract_one_class(data,labels,label_alphabet[1])
pair = np.hstack((first_class[randint(0,first_class.shape[0]),:],second_class[randint(0,second_class.shape[0]),:]))
yield pair
points = np.fromiter(generate_points(data,labels,5),dtype = np.dtype('f8',(2*data.shape[1],1)))
The extract_one_class
function returns a subset of data: all data points belonging to one class label. I would like to have points be an np.array
with shape = (size,data.shape[1])
. Currently the code snippet above returns an error:
ValueError: setting an array element with a sequence.
The documentation of fromiter
claims to return a one-dimensional array. Yet others have used fromiter to construct record arrays in numpy before (e.g http://iam.al/post/21116450281/numpy-is-my-homeboy).
Am I off the mark in assuming I can generate an array in this fashion? Or is my numpy just not quite right?