To add to Steve's excellent answer.
It may not be widely known but grep is almost always faster when grepping for a longer pattern-string than a short one, because in a longer pattern, Boyer-Moore can skip forward in longer strides to achieve even better sublinear speeds:
Example:
# after running these twice to ensure apples-to-apples comparison
# (everything is in the buffer cache)
$ time grep -c 'tg=f_c' 20140910.log
28
0.168u 0.068s 0:00.26
$ time grep -c ' /cc/merchant.json tg=f_c' 20140910.log
28
0.100u 0.056s 0:00.17
The longer form is 35% faster!
How come? Boyer-Moore consructs a skip-forward table from the pattern-string, and whenever there's a mismatch, it picks the longest skip possible (from last char to first) before comparing a single char in the input to the char in the skip table.
Here's a video explaining Boyer Moore (Credit to kommradHomer)
Another common misconception (for GNU grep) is that fgrep
is faster than grep
. f
in fgrep
doesn't stand for 'fast', it stands for 'fixed' (see the man page), and since both are the same program, and both use Boyer-Moore, there's no difference in speed between them when searching for fixed-strings without regexp special chars. The only reason I use fgrep
is when there's a regexp special char (like .
, []
, or *
) I don't want it to be interpreted as such. And even then the more portable/standard form of grep -F
is preferred over fgrep
.