Important to note that unless you can change the signature of the code taking the function, there is no (easy) way to do this. That would be trying to implement a closure in a language that does not have closures that are the same as functions (the signature for a closure in C++ is different).
There are two actual ways to achieve this:
- Use some sort of singleton/global variable that you store the closure in, and then pass a helper function that calls the needed function using that closure. Here is an example:
#include <stdio.h>
template<class C, typename ReturnType, typename... Args>
class ClosureSingleton {
typedef ReturnType (C::*FuncType)(Args...);
public:
static ClosureSingleton& getInstance() {
static ClosureSingleton instance;
return instance;
}
void setClosure(C* obj, FuncType f) {
this->obj = obj;
this->function = f;
}
static ReturnType funcPtr(Args... args) {
C* obj = getInstance().obj;
auto func = getInstance().function;
return (obj->*func)(args...);
}
private:
ClosureSingleton() {}
C* obj;
FuncType function;
public:
ClosureSingleton(ClosureSingleton const&) = delete;
void operator=(ClosureSingleton const&) = delete;
};
class aClass {
public:
void aTest1(int a, int b) { printf("%d + %d = %d\n", a, b, a + b); }
int aTest2(int a, int b) { return a + b; }
};
void function1(void (*function)(int, int)) {
function(1, 1);
}
int function2(int (*function)(int, int)) {
return function(1, 1);
}
int main() {
aClass tmp;
ClosureSingleton<aClass, void, int, int>::getInstance().setClosure(
&tmp, &aClass::aTest1);
function1(&ClosureSingleton<aClass, void, int, int>::funcPtr);
ClosureSingleton<aClass, int, int, int>::getInstance().setClosure(
&tmp, &aClass::aTest2);
printf(
"function2: %d\n",
function2(&ClosureSingleton<aClass, int, int, int>::funcPtr));
return 0;
}
Of course, this has the obvious downside that the closure needs to be set before every call, as well as some thread safety issues. Not ideal, but potentially workable in specific circumstances
- Use something like asmjit or dynamic compilation to dynamically compile and pass the function in to the C code. This will only work on machines that allow heap section to be marked as executable. It is also very much non-portable as you will be writing assembly code to accomplish this. However, if you get it working, you will indeed have a true closure, albeit a substantially higher cost to creating the closure compared to how most programming languages implement closures (they do not duplicate the function assembly, instead they use a context object)
- Patch the lib/dll that has the function handler to change it's signature to allow a context object. Again, a very brittle and non optimal solution.
My original answer, which does not really answer the question, but people found it useful:
Not sure why this incredibly simple solution has been passed up:
#include <stdio.h>
class aClass
{
public:
void aTest(int a, int b)
{
printf("%d + %d = %d\n", a, b, a + b);
}
};
template<class C>
void function1(void (C::*function)(int, int), C& c)
{
(c.*function)(1, 1);
}
void function1(void (*function)(int, int)) {
function(1, 1);
}
void test(int a,int b)
{
printf("%d - %d = %d\n", a , b , a - b);
}
int main (int argc, const char* argv[])
{
aClass a;
function1(&test);
function1<aClass>(&aClass::aTest, a);
return 0;
}
Output:
1 - 1 = 0
1 + 1 = 2