I am not an expert on statistics, but binomtest
is built into SciPy and produces the same results as the accepted answer:
from scipy.stats import binomtest
binomtest(13, 100).proportion_ci()
Out[11]: ConfidenceInterval(low=0.07107304618545972, high=0.21204067708744978)
binomtest(4, 7).proportion_ci()
Out[25]: ConfidenceInterval(low=0.18405156764007, high=0.9010117215575631)
It uses Clopper-Pearson exact method by default, which matches Curt's accepted answer, which gives these values, for comparison:
Usage:
>>> calcBin(13,100)
(0.07107391357421874, 0.21204372406005856)
>>> calcBin(4,7)
(0.18405151367187494, 0.9010086059570312)
It also has options for Wilson's method, with or without continuity correction, which matches TheBamf's astropy answer:
binomtest(4, 7).proportion_ci(method='wilson')
Out[32]: ConfidenceInterval(low=0.2504583645276572, high=0.8417801447485302)
binom_conf_interval(4, 7, 0.95, interval='wilson')
Out[33]: array([0.25045836, 0.84178014])
This also matches R's binom.test
and statsmodels.stats.proportion.proportion_confint
, according to cxrodgers' comment:
For 30 successes in 60 trials, both R's binom.test and statsmodels.stats.proportion.proportion_confint give (.37, .63) using Klopper-Pearson.
binomtest(30, 60).proportion_ci(method='exact')
Out[34]: ConfidenceInterval(low=0.3680620319424367, high=0.6319379680575633)