On top of everything said in other answers if we'd like to store all the intermediate results of the computation (because we don't always need to keep intermediate results in memory) we can also use accumulate
from numpy
after various types of aggregations:
Aggregates
For binary ufuncs, there are some interesting aggregates that can be computed directly from the object. For example, if we'd like to reduce an array with a particular operation, we can use the reduce method of any ufunc. A reduce repeatedly applies a given operation to the elements of an array until only a single result remains.
For example, calling reduce on the add ufunc returns the sum of all elements in the array:
x = np.arange(1, 6)
np.add.reduce(x) # Outputs 15
Similarly, calling reduce on the multiply ufunc results in the product of all array elements:
np.multiply.reduce(x) # Outputs 120
Accumulate
If we'd like to store all the intermediate results of the computation, we can instead use accumulate:
np.add.accumulate(x) # Outputs array([ 1, 3, 6, 10, 15], dtype=int32)
np.multiply.accumulate(x) # Outputs array([ 1, 2, 6, 24, 120], dtype=int32)
Wisely using these numpy operations while performing many intermediate operations on one, or more, large Numpy arrays can give you great results without usage of any additional libraries.