Improving on @zhong.j.yu's answer, it is really a good idea to queue the writes instead of trying to perform them when they occur. However, we must tackle the problem when updates are coming so fast that the reader would choke on updates continuously coming in. My idea is what if the reades only performs the writes that were queued before the read, and ignoring subsequent writes (those would be tackled by next read).
You will need to write your own synchornised queue. It will be based off a linked list, and would contain only two methods:
public synchronised enqeue(Write write);
This method will atomically enqueue a write. There is a possible deadlock when writes would come faster than it would actually take to enqueue them, but I think there would have to be hundreds of thousands of writes every second to achieve that.
public synchronised Element cut();
This will atomically empty the queue and returns its head (or tail) as the Element object. It will contain a chain of other Elements (Element.next, etc..., just the usual linked list stuff), all those representing a chain of writes since last read. The queue would then be empty, ready to accept new writes. The reader then can trace the Element chain (which will be standalone by then, untouched by subsequent writes), perform the writes, and finally perform the read. While the reader processes the read, new writes would be enqueued in the queue, but those will be next read's problem.
I wrote this once, albeit in C++, to represent a sound data buffer. There were more writes (driver sends more data), than reads (some mathematical stuff over the data), while the writes had to finish as soon as possible. (The data came in real-time, so I needed to save them before next batch was ready in the driver.)