The operating system will provide an API call to allocate blocks of memory that your malloc
can carve up and provide to callers. In Linux/unix look at sbrk
. In Windows look at the Win32 heap API. Your records will point into this block. Making sure no two allocated sections of the block overlap is the job of your allocator code.
It looks like your records are implementing a free list. So how are you going to allocate list nodes when you don't have an allocator (yet)? The usual solution is to do it in the free blocks themselves. So a free block has the structure:
typedef struct free_block {
struct free_block *next, *prev;
size_t size;
unsigned char buffer[1];
} FREE_BLOCK;
Now this data structure actually lies at the start of a free block. Its buffer has only 1 byte in the declaration, but the actual buffer is size
bytes. Initially you'd have something like:
static FREE_BLOCK *free_list = sbrk(ARENA_SIZE);
free_list->next = free_list->prev = free_list;
free_list->size = ARENA_SIZE - offsetof(FREEBLOCK, buffer);
This places the whole arena on the free list as a single block. Your allocator will search free_list
to find a block that's big enough, carve out the piece it needs, put the remaining small block (if any) back on the free list. For freeing, it will add the freed block to the list and coalesce adjacent blocks.
Simple free list allocators differ in how they choose the free block to allocate from: first fit, rotating first fit, best fit, worst fit, etc. In practice rotating first fit seems to work as well as or better than any of the others.
Incidentally, all of the common algorithms implemented with free lists don't need double links. Single ones will do.
Since this is an academic assignment, it should be fine to just call malloc
(instead of an operating system API) to establish the big block (often called the "arena") your allocator will manage. You could also declare a big array of bytes.