In response to the general question "is it possible?" then the answer is that sure, both JavaScript and the asm.js subset are Turing complete so a translation exists.
Whether one should do this and expect a performance benefit is a different question. The short answer is "no, you shouldn't." I liken this to trying to compress a compressed file; yes, it is possible to run the compression algorithm, but in general you should not expect the resulting file to be smaller.
The short answer: The performance cost of dynamically-typed languages comes from the meaning of the code; a statically-typed program with an equivalent meaning would carry the same costs.
To understand this, it is important to understand why asm.js offers a performance benefit at all; or, more generally, why statically-typed languages perform better than dynamically-typed ones. The short answer is "run-time type checking takes time," and a longer answer would include the improved feasibility of optimizing statically-typed code. For example:
function a(x) { return x + 1; }
function b(x) { return x - 1; }
function c(x, y) { return a(x) + b(y); }
If x
and y
are both known to be integers, I can optimize function c
to a couple of machine code instructions. If they could be integers or strings, the optimization problem becomes much harder; I have to treat these as string appends in some cases, and addition in other cases. In particular, there are four possible interpretations of the addition operation that occurs in c
; it could be addition, or string append, or two different variants of coerce-to-string-and-append. As you add more possible types, the number of possible permutations grows; in the worst case for a dynamically-typed language, you have k^n possible interpretations of an expression involving n terms which could each have any number of k types. In a statically typed language, k=1, so there is always 1 interpretation of any given expression. Because of this, optimizers are fundamentally more efficient at optimizing statically-typed code than dynamically-typed code: There are fewer permutations to consider when searching for opportunities to optimize.
The point here is that when converting from dynamically-typed code to statically-typed code (as you'd be doing when going from JavaScript to asm.js), you have to account for the semantics of the original code. Meaning the type-checking still occurs (it's just now been spelled out statically-typed code) and all those permutations are still present to stifle the compiler.