I think meta-programming is the right term here.
I want to be able to use data.table much like one would use MySQL in say a webapp. That is, web users use some web front-end (like Shiny server for example) to select a data-base, select columns to filter on, select columns to group-by, select columns to aggregate and aggregation functions. I want to use R and data.table as a backend for querying, aggregation etc. Assume that front end exists and R has these variables as character strings and they are validated etc.
I wrote the following function to build the data.table expression and use the parse/eval meta-programming functionality of R to run it. Is this a reasonable way to do this?
I includes all relevant code to test this. Source this code (after reading it for security!) and run test_agg_meta() to test it. It is just a start. I could add more functionality.
But my main question is whether I am grossly over-thinking this. Is there is a more direct way to use data.table when all of the inputs are undetermined before hand without resorting to parse/eval meta-programming?
I am also aware of the "with" statement and some of the other sugarless-functional methods but don't know if they can take care of all cases.
require(data.table)
fake_data<-function(num=12){
#make some fake data
x=1:num
lets=letters[1:num]
data=data.table(
u=rep(c("A","B","C"),floor(num/3)),
v=x %%2, w=lets, x=x, y=x^2, z=1-x)
return(data)
}
data_table_meta<-function(
#aggregate a data.table meta-programmatically
data_in=fake_data(),
filter_cols=NULL,
filter_min=NULL,
filter_max=NULL,
groupby_cols=NULL,
agg_cols=setdiff(names(data_in),groupby_cols),
agg_funcs=NULL,
verbose=F,
validate=T,
jsep="_"
){
all_cols=names(data_in)
if (validate) {
stopifnot(length(filter_cols) == length(filter_min))
stopifnot(length(filter_cols) == length(filter_max))
stopifnot(filter_cols %in% all_cols)
stopifnot(groupby_cols %in% all_cols)
stopifnot(length(intersect(agg_cols,groupby_cols)) == 0)
stopifnot((length(agg_cols) == length(agg_funcs)) | (length(agg_funcs)==1) | (length(agg_funcs)==0))
}
#build the command
#defaults
i_filter=""
j_select=""
n_agg_funcs=length(agg_funcs)
n_agg_cols=length(agg_cols)
n_groupby_cols=length(groupby_cols)
if (n_agg_funcs == 0) {
#NULL
print("NULL")
j_select=paste(agg_cols,collapse=",")
j_select=paste("list(",j_select,")")
} else {
agg_names=paste(agg_funcs,agg_cols,sep=jsep)
jsels=paste(agg_names,"=",agg_funcs,"(",agg_cols,")",sep="")
if (n_groupby_cols>0) jsels=c(jsels,"N_Rows_Aggregated=.N")
j_select=paste(jsels,collapse=",")
j_select=paste("list(",j_select,")")
}
groupby=""
if (n_groupby_cols>0) {
groupby=paste(groupby_cols,collapse=",")
groupby=paste("by=list(",groupby,")",sep="")
}
n_filter_cols=length(filter_cols)
if (n_filter_cols > 0) {
i_filters=rep("",n_filter_cols)
for (i in 1:n_filter_cols) {
i_filters[i]=paste(" (",filter_cols[i]," >= ",filter_min[i]," & ",filter_cols[i]," <= ",filter_max[i],") ",sep="")
}
i_filter=paste(i_filters,collapse="&")
}
command=paste("data_in[",i_filter,",",j_select,",",groupby,"]",sep="")
if (verbose == 2) {
print("all_cols:")
print(all_cols)
print("filter_cols:")
print(filter_cols)
print("agg_cols:")
print(agg_cols)
print("filter_min:")
print(filter_min)
print("filter_max:")
print(filter_max)
print("groupby_cols:")
print(groupby_cols)
print("agg_cols:")
print(agg_cols)
print("agg_funcs:")
print(agg_funcs)
print("i_filter")
print(i_filter)
print("j_select")
print(j_select)
print("groupby")
print(groupby)
print("command")
print(command)
}
print(paste("evaluating command:",command))
eval(parse(text=command))
}
my_agg<-function(data=fake_data()){
data_out=data[
i=x<=5,
j=list(
mean_x=mean(x),
mean_y=mean(y),
sum_z=sum(z),
N_Rows_Aggregated=.N
),
by=list(u,v)]
return(data_out)
}
my_agg_meta<-function(data=fake_data()){
#should give same results as my_agg
data_out=data_table_meta(data,
filter_cols=c("x"),
filter_min=c(-10000),
filter_max=c(5),
groupby_cols=c("u","v"),
agg_cols=c("x","y","z"),
agg_funcs=c("mean","mean","sum"),
verbose=T,
validate=T,
jsep="_")
return(data_out)
}
test_agg_meta<-function(){
stopifnot(all(my_agg()==my_agg_meta()))
print("Congrats, you passed the test")
}