86

The powerset of {1, 2, 3} is:

{{}, {2}, {3}, {2, 3}, {1, 2}, {1, 3}, {1, 2, 3}, {1}}

Let's say I have a Set in Java:

Set<Integer> mySet = new HashSet<Integer>();
mySet.add(1);
mySet.add(2);
mySet.add(3);
Set<Set<Integer>> powerSet = getPowerset(mySet);

How do I write the function getPowerset, with the best possible order of complexity? (I think it might be O(2^n).)

Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
Manuel Araoz
  • 15,962
  • 24
  • 71
  • 95
  • 7
    Suppose you have a set of configurations -- say "A", "B" and "C" --, that can be used to parametrize a model, and you want to see which subset yields the best result -- e.g. just "A". A possible solution would be to test each member of the powerset. – João Silva Nov 04 '09 at 21:41
  • 7
    It's a Google interview question for software developers. It's a contrived problem to test your agility of mind. – Eric Leschinski May 15 '12 at 21:32
  • This is a reasonable question. For instance to implement the scoring function for cribbage, you have to test whether any element of the powerset adds up to 15. – John Henckel May 05 '13 at 17:58

28 Answers28

103

Yes, it is O(2^n) indeed, since you need to generate, well, 2^n possible combinations. Here's a working implementation, using generics and sets:

public static <T> Set<Set<T>> powerSet(Set<T> originalSet) {
    Set<Set<T>> sets = new HashSet<Set<T>>();
    if (originalSet.isEmpty()) {
        sets.add(new HashSet<T>());
        return sets;
    }
    List<T> list = new ArrayList<T>(originalSet);
    T head = list.get(0);
    Set<T> rest = new HashSet<T>(list.subList(1, list.size())); 
    for (Set<T> set : powerSet(rest)) {
        Set<T> newSet = new HashSet<T>();
        newSet.add(head);
        newSet.addAll(set);
        sets.add(newSet);
        sets.add(set);
    }       
    return sets;
}  

And a test, given your example input:

 Set<Integer> mySet = new HashSet<Integer>();
 mySet.add(1);
 mySet.add(2);
 mySet.add(3);
 for (Set<Integer> s : SetUtils.powerSet(mySet)) {
     System.out.println(s);
 }
João Silva
  • 89,303
  • 29
  • 152
  • 158
  • 1
    Would it be faster to use Iterator instead of using list? E.g.: Set rest = new HashSet(originalSet); Iterator i = rest.iterator(); T head = i.next(); i.remove(); ? – Dimath Jan 12 '13 at 21:51
  • this is based on the 'side effect' that addAll ignores empty sets – Cosmin Cosmin Sep 18 '13 at 22:32
  • 1
    @CosminVacaroiu ...what else could it possibly do? – user253751 Mar 13 '15 at 04:54
  • 4
    Are you sure it's `O(2^n)`? That's the number of sets in the power set, but each set has to be created in memory, which takes time proportional to the set size at least. According to wolfram alpha, it's in `O(n * 2^n)`: [wolfram alpha query](https://www.wolframalpha.com/input/?i=sum+x+*+%28n+choose+x%29%2C+x%3D0+to+n) – fabian May 24 '15 at 13:53
  • 1
    Would this work even if size of the set is in the order of 10^5 ? – bane19 Jul 09 '15 at 17:13
  • 1
    @GauravShankar 2^100=2^(10^2) already is larger than 10^30. You'll not witness the calculation finish on no matter which turing-machine you're going to calculate it. – Kalle Richter Aug 08 '16 at 14:08
  • Would it be better to use `list.remove(0)` over `list.subList(1, list.size())`? – Tot Zam Aug 27 '17 at 21:22
  • the code works fine but I am unable to understand it. Is it possible to add some comments in the code. Thanks – firstpostcommenter Apr 14 '18 at 12:52
  • 1
    This is very beautiful Java. Thanks for your reply! – Manuel Araoz Apr 07 '21 at 03:15
  • 1
    Oh wow @ManuelAraoz, 11 years have passed since I wrote this answer. I also didn't realize you worked on OpenZeppelin, I can't tell you how thankful I am for that, I use it on a daily basis :-) – João Silva Apr 07 '21 at 23:17
  • @JoãoSilva yeah I asked back when I was in college, I ended up using your code for a project so I'm also thankful! – Manuel Araoz Apr 08 '21 at 16:14
29

Actually, I've written code that does what you're asking for in O(1). The question is what you plan to do with the Set next. If you're just going to call size() on it, that's O(1), but if you're going to iterate it that's obviously O(2^n).

contains() would be O(n), etc.

Do you really need this?

EDIT:

This code is now available in Guava, exposed through the method Sets.powerSet(set).

Sean Patrick Floyd
  • 292,901
  • 67
  • 465
  • 588
Kevin Bourrillion
  • 40,336
  • 12
  • 74
  • 87
12

Here's a solution where I use a generator, the advantage being, the entire power set is never stored at once... So you can iterate over it one-by-one without needing it to be stored in memory. I'd like to think it's a better option... Note the complexity is the same, O(2^n), but the memory requirements are reduced (assuming the garbage collector behaves! ;) )

/**
 *
 */
package org.mechaevil.util.Algorithms;

import java.util.BitSet;
import java.util.Iterator;
import java.util.Set;
import java.util.TreeSet;

/**
 * @author st0le
 *
 */
public class PowerSet<E> implements Iterator<Set<E>>,Iterable<Set<E>>{
    private E[] arr = null;
    private BitSet bset = null;

    @SuppressWarnings("unchecked")
    public PowerSet(Set<E> set)
    {
        arr = (E[])set.toArray();
        bset = new BitSet(arr.length + 1);
    }

    @Override
    public boolean hasNext() {
        return !bset.get(arr.length);
    }

    @Override
    public Set<E> next() {
        Set<E> returnSet = new TreeSet<E>();
        for(int i = 0; i < arr.length; i++)
        {
            if(bset.get(i))
                returnSet.add(arr[i]);
        }
        //increment bset
        for(int i = 0; i < bset.size(); i++)
        {
            if(!bset.get(i))
            {
                bset.set(i);
                break;
            }else
                bset.clear(i);
        }

        return returnSet;
    }

    @Override
    public void remove() {
        throw new UnsupportedOperationException("Not Supported!");
    }

    @Override
    public Iterator<Set<E>> iterator() {
        return this;
    }

}

To call it, use this pattern:

        Set<Character> set = new TreeSet<Character> ();
        for(int i = 0; i < 5; i++)
            set.add((char) (i + 'A'));

        PowerSet<Character> pset = new PowerSet<Character>(set);
        for(Set<Character> s:pset)
        {
            System.out.println(s);
        }

It's from my Project Euler Library... :)

Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
st0le
  • 33,375
  • 8
  • 89
  • 89
  • The Guava one works much like this one, but is restricted to 32 elements. That's not unreasonable because 2**32 is probably too many iterations. It uses even less memory than yours because it generates the AbstractSet only when needed. Try your code against the Guava one where you println only 1 in 10,000 elements, and make a big example. I bet that the Guava one will be faster. – Eyal Mar 24 '14 at 14:29
  • @Eyal, I'm sure it does, I never claimed otherwise. I wrote this myself, it's not intended for production code. It was an exercise in algorithms. – st0le Apr 01 '14 at 20:49
  • 1
    Minor remark: your 'returnSet' is a TreeSet, which requires that its items are comparable. This may not be the case. Consider swapping it for a HashSet or LinkedHashSet – Joris Kinable Jan 17 '17 at 23:35
10

If n < 63, which is a reasonable assumption since you'd run out of memory (unless using an iterator implementation) trying to construct the power set anyway, this is a more concise way to do it. Binary operations are way faster than Math.pow() and arrays for masks, but somehow Java users are afraid of them...

List<T> list = new ArrayList<T>(originalSet);
int n = list.size();

Set<Set<T>> powerSet = new HashSet<Set<T>>();

for( long i = 0; i < (1 << n); i++) {
    Set<T> element = new HashSet<T>();
    for( int j = 0; j < n; j++ )
        if( (i >> j) % 2 == 1 ) element.add(list.get(j));
    powerSet.add(element); 
}

return powerSet;
Andrew Mao
  • 35,740
  • 23
  • 143
  • 224
  • The termination condition in a for loop should be i < (2 << n - 1) instead of i < (1 << n - 1). – bazeusz Jan 04 '14 at 10:12
  • Thanks @bazeusz, I changed it to `i < (1 << n)` which is equivalent. – Andrew Mao Apr 10 '14 at 02:41
  • Since bit wise operations are used, I think `((i >> j) &1) == 1` instead of `(i >> j) % 2 == 1` can be used. Also, `long` are signed, so, do you think check for overflow makes sense? – Ravi Tiwari Nov 04 '20 at 10:44
9

Here is a tutorial describing exactly what you want, including the code. You're correct in that the complexity is O(2^n).

Artelius
  • 48,337
  • 13
  • 89
  • 105
Adamski
  • 54,009
  • 15
  • 113
  • 152
  • 3
    Isn't complexity (n*2^n)? Because binary string is of length n, and in each iteration of the main loop we iterate the entire binary string. – Maggie Sep 17 '13 at 05:53
  • 1
    Tutorial is great BUT I have used this technique in solving the HackerRank problem: it passed only half of the test cases, and the other half failed due timeout or caused runtime error. – Eugenia Ozirna Jan 12 '17 at 08:28
7

I came up with another solution based on @Harry He's ideas. Probably not the most elegant but here it goes as I understand it:

Let's take the classical simple example PowerSet of S P(S) = {{1},{2},{3}}. We know the formula to get the number of subsets is 2^n (7 + empty set). For this example 2^3 = 8 subsets.

In order to find each subset we need to convert 0-7 decimal to binary representation shown in the conversion table below:

ConversionTable

If we traverse the table row by row, each row will result in a subset and the values of each subset will come from the enabled bits.

Each column in the Bin Value section corresponds to the index position in the original input Set.

Here my code:

public class PowerSet {

/**
 * @param args
 */
public static void main(String[] args) {
    PowerSet ps = new PowerSet();
    Set<Integer> set = new HashSet<Integer>();
    set.add(1);
    set.add(2);
    set.add(3);
    for (Set<Integer> s : ps.powerSet(set)) {
        System.out.println(s);
    }
}

public Set<Set<Integer>> powerSet(Set<Integer> originalSet) {
    // Original set size e.g. 3
    int size = originalSet.size();
    // Number of subsets 2^n, e.g 2^3 = 8
    int numberOfSubSets = (int) Math.pow(2, size);
    Set<Set<Integer>> sets = new HashSet<Set<Integer>>();
    ArrayList<Integer> originalList = new ArrayList<Integer>(originalSet);
    for (int i = 0; i < numberOfSubSets; i++) {
        // Get binary representation of this index e.g. 010 = 2 for n = 3
        String bin = getPaddedBinString(i, size);
        //Get sub-set
        Set<Integer> set = getSet(bin, originalList));
        sets.add(set);
    }
    return sets;
}

//Gets a sub-set based on the binary representation. E.g. for 010 where n = 3 it will bring a new Set with value 2
private Set<Integer> getSet(String bin, List<Integer> origValues){
    Set<Integer> result = new HashSet<Integer>();
    for(int i = bin.length()-1; i >= 0; i--){
        //Only get sub-sets where bool flag is on
        if(bin.charAt(i) == '1'){
            int val = origValues.get(i);
            result.add(val);
        }
    }
    return result;
}

//Converts an int to Bin and adds left padding to zero's based on size
private String getPaddedBinString(int i, int size) {
    String bin = Integer.toBinaryString(i);
    bin = String.format("%0" + size + "d", Integer.parseInt(bin));
    return bin;
}

}
Adolfo Perez
  • 2,834
  • 4
  • 41
  • 61
5

If you're using Eclipse Collections (formerly GS Collections), you can use the powerSet() method on all SetIterables.

MutableSet<Integer> set = UnifiedSet.newSetWith(1, 2, 3);
System.out.println("powerSet = " + set.powerSet());
// prints: powerSet = [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]]

Note: I am a committer for Eclipse Collections.

Donald Raab
  • 6,458
  • 2
  • 36
  • 44
Craig P. Motlin
  • 26,452
  • 17
  • 99
  • 126
  • Can you share and explain the code of your solution? – Konrad Höffner Feb 23 '14 at 11:10
  • 3
    You can look through the code here: https://github.com/goldmansachs/gs-collections/blob/2765876efc37cf0f6b450f17d3284398eb013a40/collections/src/main/java/com/gs/collections/impl/utility/internal/SetIterables.java#L136 – Craig P. Motlin Feb 24 '14 at 20:29
4

Here is an easy iterative O(2^n) solution:

public static Set<Set<Integer>> powerSet(List<Integer> intList){

    Set<Set<Integer>> result = new HashSet();
    result.add(new HashSet());

    for (Integer i : intList){

        Set<Set<Integer>> temp = new HashSet();

        for(Set<Integer> intSet : result){

            intSet = new HashSet(intSet);
            intSet.add(i);                
            temp.add(intSet);
        }
        result.addAll(temp);
    }
    return result;
}
jump3r
  • 161
  • 1
  • 7
  • 1
    This solution also uses O(2^n) space which would be too much for large input sets. Its better to follow the recursive definition, using a stack or a queue in place of the recursion. – rossb83 Sep 23 '15 at 08:52
4

I was looking for a solution that wasn't as huge as the ones posted here. This targets Java 7, so it will require a handful of pastes for versions 5 and 6.

Set<Set<Object>> powerSetofNodes(Set<Object> orig) {
    Set<Set<Object>> powerSet = new HashSet<>(),
        runSet = new HashSet<>(),
        thisSet = new HashSet<>();

    while (powerSet.size() < (Math.pow(2, orig.size())-1)) {
        if (powerSet.isEmpty()) {
            for (Object o : orig) {
                Set<Object> s = new TreeSet<>();
                s.add(o);
                runSet.add(s);
                powerSet.add(s);
            }
            continue;
        }
        for (Object o : orig) {
            for (Set<Object> s : runSet) {
                Set<Object> s2 = new TreeSet<>();
                s2.addAll(s);
                s2.add(o);
                powerSet.add(s2);
                thisSet.add(s2);
            }
        }
        runSet.clear();
        runSet.addAll(thisSet);
        thisSet.clear();
    }
    powerSet.add(new TreeSet());
    return powerSet;

Here's some example code to test:

Set<Object> hs = new HashSet<>();
hs.add(1);
hs.add(2);
hs.add(3);
hs.add(4);
for(Set<Object> s : powerSetofNodes(hs)) {
    System.out.println(Arrays.toString(s.toArray()));
}
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
Ben
  • 41
  • 1
3

The following solution is borrowed from my book "Coding Interviews: Questions, Analysis & Solutions":

Some integers in an array are selected that compose a combination. A set of bits is utilized, where each bit stands for an integer in the array. If the i-th character is selected for a combination, the i-th bit is 1; otherwise, it is 0. For instance, three bits are used for combinations of the array [1, 2, 3]. If the first two integers 1 and 2 are selected to compose a combination [1, 2], the corresponding bits are {1, 1, 0}. Similarly, bits corresponding to another combination [1, 3] are {1, 0, 1}. We are able to get all combinations of an array with length n if we can get all possible combinations of n bits.

A number is composed of a set of bits. All possible combinations of n bits correspond to numbers from 1 to 2^n-1. Therefore, each number in the range between 1 and 2^n-1 corresponds to a combination of an array with length n. For example, the number 6 is composed of bits {1, 1, 0}, so the first and second characters are selected in the array [1, 2, 3] to generate the combination [1, 2]. Similarly, the number 5 with bits {1, 0, 1} corresponds to the combination [1, 3].

The Java code to implement this solution looks like below:

public static ArrayList<ArrayList<Integer>> powerSet(int[] numbers) {
    ArrayList<ArrayList<Integer>> combinations = new ArrayList<ArrayList<Integer>>(); 
    BitSet bits = new BitSet(numbers.length);
    do{
        combinations.add(getCombination(numbers, bits));
    }while(increment(bits, numbers.length));

    return combinations;
}

private static boolean increment(BitSet bits, int length) {
    int index = length - 1;

    while(index >= 0 && bits.get(index)) {
        bits.clear(index);
        --index;
    }

    if(index < 0)
        return false;

    bits.set(index);
    return true;
}

private static ArrayList<Integer> getCombination(int[] numbers, BitSet bits){
    ArrayList<Integer> combination = new ArrayList<Integer>();
    for(int i = 0; i < numbers.length; ++i) {
        if(bits.get(i))
            combination.add(numbers[i]);
    }

    return combination;
}

The method increment increases a number represented in a set of bits. The algorithm clears 1 bits from the rightmost bit until a 0 bit is found. It then sets the rightmost 0 bit to 1. For example, in order to increase the number 5 with bits {1, 0, 1}, it clears 1 bits from the right side and sets the rightmost 0 bit to 1. The bits become {1, 1, 0} for the number 6, which is the result of increasing 5 by 1.

Andrew Barber
  • 39,603
  • 20
  • 94
  • 123
Harry He
  • 1,795
  • 16
  • 12
  • Two things I modified: looping in getCombination, instead of numbers.length (or bits.size()), one can iterate to bits.length(), which speeds-up generation slightly. Finally, I sorted the subsets by size for my problem requires that. – BoLe Feb 07 '17 at 11:11
3

Some of the solutions above suffer when the size of the set is large because they are creating a lot of object garbage to be collected and require copying data. How can we avoid that? We can take advantage of the fact that we know how big the result set size will be (2^n), preallocate an array that big, and just append to the end of it, never copying.

The speedup grows quickly with n. I compared it to João Silva's solution above. On my machine (all measurements approximate), n=13 is 5x faster, n=14 is 7x, n=15 is 12x, n=16 is 25x, n=17 is 75x, n=18 is 140x. So that garbage creation/collection and copying is dominating in what otherwise seem to be similar big-O solutions.

Preallocating the array at the beginning appears to be a win compared to letting it grow dynamically. With n=18, dynamic growing takes about twice as long overall.

public static <T> List<List<T>> powerSet(List<T> originalSet) {
    // result size will be 2^n, where n=size(originalset)
    // good to initialize the array size to avoid dynamic growing
    int resultSize = (int) Math.pow(2, originalSet.size());
    // resultPowerSet is what we will return
    List<List<T>> resultPowerSet = new ArrayList<List<T>>(resultSize);

    // Initialize result with the empty set, which powersets contain by definition
    resultPowerSet.add(new ArrayList<T>(0)); 

    // for every item in the original list
    for (T itemFromOriginalSet : originalSet) {

        // iterate through the existing powerset result
        // loop through subset and append to the resultPowerset as we go
        // must remember size at the beginning, before we append new elements
        int startingResultSize = resultPowerSet.size();
        for (int i=0; i<startingResultSize; i++) {
            // start with an existing element of the powerset
            List<T> oldSubset = resultPowerSet.get(i);

            // create a new element by adding a new item from the original list
            List<T> newSubset = new ArrayList<T>(oldSubset);
            newSubset.add(itemFromOriginalSet);

            // add this element to the result powerset (past startingResultSize)
            resultPowerSet.add(newSubset);
        }
    }
    return resultPowerSet;
}
3
import java.util.Set;
import com.google.common.collect.*;

Set<Set<Integer>> sets = Sets.powerSet(ImmutableSet.of(1, 2, 3));
Bax
  • 4,260
  • 5
  • 43
  • 65
1

If S is a finite set with N elements, then the power set of S contains 2^N elements. The time to simply enumerate the elements of the powerset is 2^N, so O(2^N) is a lower bound on the time complexity of (eagerly) constructing the powerset.

Put simply, any computation that involves creating powersets is not going to scale for large values of N. No clever algorithm will help you ... apart from avoiding the need to create the powersets!

Stephen C
  • 698,415
  • 94
  • 811
  • 1,216
1

Algorithm:

Input: Set[], set_size 1. Get the size of power set powet_set_size = pow(2, set_size) 2 Loop for counter from 0 to pow_set_size (a) Loop for i = 0 to set_size (i) If ith bit in counter is set Print ith element from set for this subset (b) Print seperator for subsets i.e., newline

#include <stdio.h>
#include <math.h>
 
void printPowerSet(char *set, int set_size)
{
    /*set_size of power set of a set with set_size
      n is (2**n -1)*/
    unsigned int pow_set_size = pow(2, set_size);
    int counter, j;
 
    /*Run from counter 000..0 to 111..1*/
    for(counter = 0; counter < pow_set_size; counter++)
    {
      for(j = 0; j < set_size; j++)
       {
          /* Check if jth bit in the counter is set
             If set then pront jth element from set */
          if(counter & (1<<j))
            printf("%c", set[j]);
       }
       printf("\n");
    }
}
 
/*Driver program to test printPowerSet*/
int main()
{
    char set[] = {'a','b','c'};
    printPowerSet(set, 3);
 
    getchar();
    return 0;
}
gaurav
  • 31
  • 3
1

This is my recursive solution which can get the power set of any set using Java Generics. Its main idea is to combine the head of the input array with all the possible solutions of the rest of the array as follows.

import java.util.LinkedHashSet;
import java.util.Set;

public class SetUtil {
    private static<T>  Set<Set<T>> combine(T head, Set<Set<T>> set) {
        Set<Set<T>> all = new LinkedHashSet<>();

        for (Set<T> currentSet : set) {
            Set<T> outputSet = new LinkedHashSet<>();

            outputSet.add(head);
            outputSet.addAll(currentSet);

            all.add(outputSet);
        }

        all.addAll(set);        

        return all;
    }

    //Assuming that T[] is an array with no repeated elements ...
    public static<T> Set<Set<T>> powerSet(T[] input) {
        if (input.length == 0) {
            Set <Set<T>>emptySet = new LinkedHashSet<>();

            emptySet.add(new LinkedHashSet<T>());

            return emptySet;
        }

        T head = input[0];
        T[] newInputSet = (T[]) new Object[input.length - 1];

        for (int i = 1; i < input.length; ++i) {
            newInputSet[i - 1] = input[i];
        }

        Set<Set<T>> all = combine(head, powerSet(newInputSet));

        return all;
    }

    public static void main(String[] args) {            
        Set<Set<Integer>> set = SetUtil.powerSet(new Integer[] {1, 2, 3, 4, 5, 6});

        System.out.println(set);
    }
}

This will output:

[[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5], [1, 2, 3, 4, 6], [1, 2, 3, 4], [1, 2, 3, 5, 6], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3], [1, 2, 4, 5, 6], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4], [1, 2, 5, 6], [1, 2, 5], [1, 2, 6], [1, 2], [1, 3, 4, 5, 6], [1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4], [1, 3, 5, 6], [1, 3, 5], [1, 3, 6], [1, 3], [1, 4, 5, 6], [1, 4, 5], [1, 4, 6], [1, 4], [1, 5, 6], [1, 5], [1, 6], [1], [2, 3, 4, 5, 6], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 4], [2, 3, 5, 6], [2, 3, 5], [2, 3, 6], [2, 3], [2, 4, 5, 6], [2, 4, 5], [2, 4, 6], [2, 4], [2, 5, 6], [2, 5], [2, 6], [2], [3, 4, 5, 6], [3, 4, 5], [3, 4, 6], [3, 4], [3, 5, 6], [3, 5], [3, 6], [3], [4, 5, 6], [4, 5], [4, 6], [4], [5, 6], [5], [6], []]
Hazem Saleh
  • 272
  • 1
  • 8
1

Another sample implementation:

 public static void main(String args[])
    {
        int[] arr = new int[]{1,2,3,4};
        // Assuming that number of sets are in integer range
        int totalSets = (int)Math.pow(2,arr.length);
        for(int i=0;i<totalSets;i++)
        {
            String binaryRep = Integer.toBinaryString(i);      
            for(int j=0;j<binaryRep.length();j++)
            {
                int index=binaryRep.length()-1-j;
                if(binaryRep.charAt(index)=='1')
                System.out.print(arr[j] +" ");       
            }
            System.out.println();
        }
    }
Sandeep
  • 81
  • 1
  • 3
1

This is my approach with lambdas.

public static <T> Set<Set<T>> powerSet(T[] set) {
      return IntStream
            .range(0, (int) Math.pow(2, set.length))
            .parallel() //performance improvement
            .mapToObj(e -> IntStream.range(0, set.length).filter(i -> (e & (0b1 << i)) != 0).mapToObj(i -> set[i]).collect(Collectors.toSet()))
            .map(Function.identity())
            .collect(Collectors.toSet());
        }

Or in parallel (see parallel() comment):

Size of input set: 18

Logical processors: 8 à 3.4GHz

Performance improvement: 30%

cnsgithub
  • 15
  • 5
Werner
  • 11
  • 1
1

One way without recursion is the following: Use a binary mask and make all the possible combinations.

public HashSet<HashSet> createPowerSet(Object[] array)
{
    HashSet<HashSet> powerSet=new HashSet();
    boolean[] mask= new boolean[array.length];

    for(int i=0;i<Math.pow(2, array.length);i++)
    {
        HashSet set=new HashSet();
        for(int j=0;j<mask.length;j++)
        {
            if(mask[i])
                set.add(array[j]);
        }
        powerSet.add(set);      

        increaseMask(mask);
    }

    return powerSet;
}

public void increaseMask(boolean[] mask)
{
    boolean carry=false;

    if(mask[0])
        {
            mask[0]=false;
            carry=true;
        }
    else
        mask[0]=true;

    for(int i=1;i<mask.length;i++)
    {
        if(mask[i]==true && carry==true)
        mask[i]=false;
        else if (mask[i]==false && carry==true)
        {
            mask[i]=true;
            carry=false;
        }
        else 
            break;

    }

}
Orestis
  • 19
  • 1
0
// input: S
// output: P
// S = [1,2]
// P = [], [1], [2], [1,2]

public static void main(String[] args) {
    String input = args[0];
    String[] S = input.split(",");
    String[] P = getPowerSet(S);
    if (P.length == Math.pow(2, S.length)) {
        for (String s : P) {
            System.out.print("[" + s + "],");
        }
    } else {
        System.out.println("Results are incorrect");
    }
}

private static String[] getPowerSet(String[] s) {
    if (s.length == 1) {
        return new String[] { "", s[0] };
    } else {
        String[] subP1 = getPowerSet(Arrays.copyOfRange(s, 1, s.length));
        String[] subP2 = new String[subP1.length];
        for (int i = 0; i < subP1.length; i++) {
            subP2[i] = s[0] + subP1[i];
        }
        String[] P = new String[subP1.length + subP2.length];
        System.arraycopy(subP1, 0, P, 0, subP1.length);
        System.arraycopy(subP2, 0, P, subP1.length, subP2.length);
        return P;
    }

}
  • Welcome to Stack Overflow. You might want to flesh out this answer a little with some text describing what it's doing and how it solves the question asker's problem. – Lachlan Goodhew-Cook Jul 30 '15 at 23:09
0

I recently had to use something like this, but needed the smallest sublists (with 1 element, then 2 elements, ...) first. I did not want to include the empty nor the whole list. Also, I did not need a list of all the sublists returned, I just needed to do some stuff with each.

Wanted to do this without recursion, and came up with the following (with the "doing stuff" abstracted into a functional interface):

@FunctionalInterface interface ListHandler<T> {
    void handle(List<T> list);
}


public static <T> void forAllSubLists(final List<T> list, ListHandler handler) {
    int     ll = list.size();   // Length of original list
    int     ci[] = new int[ll]; // Array for list indices
    List<T> sub = new ArrayList<>(ll);  // The sublist
    List<T> uml = Collections.unmodifiableList(sub);    // For passing to handler

    for (int gl = 1, gm; gl <= ll; gl++) {  // Subgroup length 1 .. n-1
        gm = 0; ci[0] = -1; sub.add(null);  // Some inits, and ensure sublist is at least gl items long

        do {
                ci[gm]++;                       // Get the next item for this member

                if (ci[gm] > ll - gl + gm) {    // Exhausted all possibilities for this position
                        gm--; continue;         // Continue with the next value for the previous member
                }

                sub.set(gm, list.get(ci[gm]));  // Set the corresponding member in the sublist

                if (gm == gl - 1) {             // Ok, a sublist with length gl
                        handler.handle(uml);    // Handle it
                } else {
                        ci[gm + 1] = ci[gm];    // Starting value for next member is this 
                        gm++;                   // Continue with the next member
                }
        } while (gm >= 0);  // Finished cycling through all possibilities
    }   // Next subgroup length
}

In this way, it's also easy to limit it to sublists of specific lengths.

tijmen
  • 41
  • 2
0
public class PowerSet {
    public static List<HashSet<Integer>> powerset(int[] a) {
        LinkedList<HashSet<Integer>> sets = new LinkedList<HashSet<Integer>>();
        int n = a.length;
        for (int i = 0; i < 1 << n; i++) {
            HashSet<Integer> set = new HashSet<Integer>();
            for (int j = 0; j < n; j++) {
                if ((1 << j & i) > 0)
                    set.add(a[j]);
            }
            sets.add(set);
        }
        return sets;
    }

    public static void main(String[] args) {
        List<HashSet<Integer>> sets = PowerSet.powerset(new int[]{ 1, 2, 3 });
        for (HashSet<Integer> set : sets) {
            for (int i : set)
                System.out.print(i);
            System.out.println();
        } 
    }
}
Selim Ekizoglu
  • 519
  • 5
  • 6
0

Yet another solution - with java8+ streaming api It is lazy and ordered so it returns correct subsets when it is used with "limit()".

 public long bitRangeMin(int size, int bitCount){
    BitSet bs = new BitSet(size);
    bs.set(0, bitCount);
    return bs.toLongArray()[0];
}

public long bitRangeMax(int size, int bitCount){
    BitSet bs = BitSet.valueOf(new long[]{0});
    bs.set(size - bitCount, size);
    return bs.toLongArray()[0];
}

public <T> Stream<List<T>> powerSet(Collection<T> data)
{
    List<T> list = new LinkedHashSet<>(data).stream().collect(Collectors.toList());
    Stream<BitSet> head = LongStream.of(0).mapToObj( i -> BitSet.valueOf(new long[]{i}));
    Stream<BitSet> tail = IntStream.rangeClosed(1, list.size())
            .boxed()
            .flatMap( v1 -> LongStream.rangeClosed( bitRangeMin(list.size(), v1), bitRangeMax(list.size(), v1))
                    .mapToObj(v2 -> BitSet.valueOf(new long[]{v2}))
                    .filter( bs -> bs.cardinality() == v1));

    return Stream.concat(head, tail)
            .map( bs -> bs
                    .stream()
                    .mapToObj(list::get)
                    .collect(Collectors.toList()));
}

And the client code is

@Test
public void testPowerSetOfGivenCollection(){
    List<Character> data = new LinkedList<>();
    for(char i = 'a'; i < 'a'+5; i++ ){
        data.add(i);
    }
    powerSet(data)
            .limit(9)
            .forEach(System.out::print);

}

/* Prints : [][a][b][c][d][e][a, b][a, c][b, c] */

ekobir
  • 1
  • 1
0

We could write the power set with or without using recursion. Here is an attempt without recursion:

public List<List<Integer>> getPowerSet(List<Integer> set) {
    List<List<Integer>> powerSet = new ArrayList<List<Integer>>();
    int max = 1 << set.size();
    for(int i=0; i < max; i++) {
        List<Integer> subSet = getSubSet(i, set);
        powerSet.add(subSet);
    }
    return powerSet;
}

private List<Integer> getSubSet(int p, List<Integer> set) {
    List<Integer> subSet = new ArrayList<Integer>();
    int position = 0;
    for(int i=p; i > 0; i >>= 1) {
        if((i & 1) == 1) {
            subSet.add(set.get(position));
        }
        position++;
    }
    return subSet;
}
Uday
  • 1,165
  • 9
  • 12
0

A sub-set of t is any set that can be made by removing zero or more elements of t. The withoutFirst subset adds the subsets of t that are missing the first element and the for loop will deal with adding subsets with the first element. For example, if t contained the elements ["1", "2", "3"], missingFirst will add [[""], ["2"], ["3"], ["2","3"]] and the for loop will stick the "1" in front of these element and add it to the newSet. So we'll end up with [[""], ["1"], ["2"], ["3"], ["1", "2"], ["1", "3"], ["2","3"], ["1", "2", "3"]].

public static Set<Set<String>> allSubsets(Set<String> t) {
        Set<Set<String>> powerSet = new TreeSet<>();
        if(t.isEmpty()) {
            powerSet.add(new TreeSet<>());
            return powerSet;
        }
        String first = t.get(0);
        Set<Set<String>> withoutFirst = allSubsets(t.subSet(1, t.size()));
        for (List<String> 1st : withoutFirst) {
            Set<String> newSet = new TreeSet<>();
            newSet.add(first);
            newSet.addAll(lst);
            powerSet.add(newSet);
        }
        powerSet.addAll(withoutFirst);
        return powerSet;
    }
Mr. H
  • 9
  • 4
  • Please consider adding a short explanation along the code you provided. – Mirza Sisic Nov 27 '17 at 03:56
  • This doesn't even compile, seems to be written in some fantasy Java version. `Set` doesn't have a `get` method with an index, nor a `subSet` method; `1st` is not a valid identifier (I suppose `lst` was meant). Change all the sets to lists and it almost compiles... – john16384 Apr 24 '19 at 23:41
0

Here is to generate a power set. The idea is first = S[0] and smaller sets be S[1,...n].

Compute all subsets of smallerSet and put them in allsubsets.

For each subsets in allsubsets, clone it and add first to the subset.

ArrayList<ArrayList<Integer>> getSubsets(ArrayList<Integer> set, int index){
    ArrayList<ArrayList<Integer>> allsubsets;
    if(set.size() == index){
        allsubsets = new ArrayList<ArrayList<Integer>>();
        allsubsets.add(new ArrayList<Integer>()); // the empty set 
    }else{
        allsubsets = getSubsets(set, index+1);
        int item = set.get(index);

        ArrayList<ArrayList<Integer>> moresubsets = new ArrayList<ArrayList<Integer>>();

        for(ArrayList<Integer> subset: allsubsets){
            ArrayList<Integer> newsubset = new ArrayList<Integer>();

            newsubset.addAll(subset);
            newsubset.add(item);
            moresubsets.add(newsubset);

        }

        moresubsets.addAll(moresubsets);

    }

    return allsubsets;
}
0
package problems;

import java.util.ArrayList;
import java.util.List;

public class SubsetFinderRecursive {
    public static void main(String[] args) {
        //input
        int[] input = new int[3];
        for(int i=0; i<input.length; i++) {
            input[i] = i+1;
        }
        // root node of the tree
        Node root = new Node();

        // insert values into tree
        for(int i=0; i<input.length; i++) {
            insertIntoTree(root, input[i]);
        }

        // print leaf nodes for subsets
        printLeafNodes(root);
    }

    static void printLeafNodes(Node root) {

        if(root == null) {
            return;
        }

        // Its a leaf node
        if(root.left == null && root.right == null) {
            System.out.println(root.values);
            return;
        }

        // if we are not at a leaf node, then explore left and right

        if(root.left !=null) {
            printLeafNodes(root.left);
        }

        if(root.right != null) {
            printLeafNodes(root.right);
        }
    }

    static void insertIntoTree(Node root, int value) {

        // Error handling
        if(root == null) {
            return;
        }

        // if there is a sub tree then go down
        if(root.left !=null && root.right != null) {
            insertIntoTree(root.left, value);
            insertIntoTree(root.right, value);
        }

        // if we are at the leaf node, then we have 2 choices
        // Either exclude or include
        if(root.left == null && root.right == null) {
            // exclude
            root.left = new Node();
            root.left.values.addAll(root.values);
            // include
            root.right = new Node();
            root.right.values.addAll(root.values);
            root.right.values.add(value);
            return;
        }
    }

}

class Node {
    Node left;
    Node right;
    List<Integer> values = new ArrayList<Integer>();
}
0

This function solved this problem by recursion but make variable named powerset as a Global Variable:

static ArrayList<ArrayList<Integer>> powerSet = new ArrayList<>();

public static void getPowerSet(Queue<Integer> a) {
    int n = a.poll();
    if (!a.isEmpty()) {
        getPowerSet(a);
    }
    int s = powerSet.size();
    for (int i = 0; i < s; i++) {
        ArrayList<Integer> ne = new ArrayList<>();
        for (int j = 0; j < powerSet.get(i).size(); j++) {
            ne.add(powerSet.get(i).get(j));
        }
        ne.add(n);
        powerSet.add(ne);
    }
    ArrayList<Integer> p = new ArrayList<>();
    p.add(n);
    powerSet.add(p);
}
Antoine
  • 1,393
  • 4
  • 20
  • 26
0

Just use recursion.

public class Combinations {

// A recursive method that prints all combinations of any size of the first n elements of an array
    public static void printCombinations(String[] arr, int n, String current) {
    // Base case: if n is 0, print the current combination
        if (n == 0) {
            System.out.println(current);
            return;
        }
    // Recursive case: for each element, either include it or exclude it from the current combination and recursively call printCombinations with n-1
        printCombinations(arr, n-1, current + arr[n-1] + " "); // include
        printCombinations(arr, n-1, current); // exclude
    }

    public static void main(String[] args) {
        // Read in the command line argument
       int n = Integer.parseInt(args[0]);
        // Well my array in this case consists of first 6 letters of the alphabet
        String[] arr = new String[n];
        arr[0] = "a";
        arr[1] = "b";
        arr[2] = "c";
        arr[3] = "d";
        arr[4] = "e";
        arr[5] = "f";
        // Call the recursive method with an empty current combination
        printCombinations(arr, n, "");
    }
}
R.Jean
  • 1
  • 1