TL;DR
>>> import pandas as pd
>>> df = pd.DataFrame({'Position':[1,2,3,4,5], 'Letter':['a', 'b', 'c', 'd', 'e']})
>>> dict(sorted(df.values.tolist())) # Sort of sorted...
{'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
>>> from collections import OrderedDict
>>> OrderedDict(df.values.tolist())
OrderedDict([('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)])
In Long
Explaining solution: dict(sorted(df.values.tolist()))
Given:
df = pd.DataFrame({'Position':[1,2,3,4,5], 'Letter':['a', 'b', 'c', 'd', 'e']})
[out]:
Letter Position
0 a 1
1 b 2
2 c 3
3 d 4
4 e 5
Try:
# Get the values out to a 2-D numpy array,
df.values
[out]:
array([['a', 1],
['b', 2],
['c', 3],
['d', 4],
['e', 5]], dtype=object)
Then optionally:
# Dump it into a list so that you can sort it using `sorted()`
sorted(df.values.tolist()) # Sort by key
Or:
# Sort by value:
from operator import itemgetter
sorted(df.values.tolist(), key=itemgetter(1))
[out]:
[['a', 1], ['b', 2], ['c', 3], ['d', 4], ['e', 5]]
Lastly, cast the list of list of 2 elements into a dict.
dict(sorted(df.values.tolist()))
[out]:
{'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
Related
Answering @sbradbio comment:
If there are multiple values for a specific key and you would like to keep all of them, it's the not the most efficient but the most intuitive way is:
from collections import defaultdict
import pandas as pd
multivalue_dict = defaultdict(list)
df = pd.DataFrame({'Position':[1,2,4,4,4], 'Letter':['a', 'b', 'd', 'e', 'f']})
for idx,row in df.iterrows():
multivalue_dict[row['Position']].append(row['Letter'])
[out]:
>>> print(multivalue_dict)
defaultdict(list, {1: ['a'], 2: ['b'], 4: ['d', 'e', 'f']})