70

If you want to insert a small plot inside a bigger one you can use Axes, like here.

The problem is that I don't know how to do the same inside a subplot.

I have several subplots and I would like to plot a small plot inside each subplot. The example code would be something like this:

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()

for i in range(4):
    ax = fig.add_subplot(2,2,i)
    ax.plot(np.arange(11),np.arange(11),'b')

    #b = ax.axes([0.7,0.7,0.2,0.2]) 
    #it gives an error, AxesSubplot is not callable

    #b = plt.axes([0.7,0.7,0.2,0.2])
    #plt.plot(np.arange(3),np.arange(3)+11,'g')
    #it plots the small plot in the selected position of the whole figure, not inside the subplot

Any ideas?

starball
  • 20,030
  • 7
  • 43
  • 238
Argitzen
  • 783
  • 1
  • 8
  • 7
  • See [this related post](http://stackoverflow.com/questions/14589600/matplotlib-insets-in-subplots) – wflynny Jul 03 '13 at 22:35
  • Working on the solution, I found another problem... http://stackoverflow.com/questions/17478165/fig-add-subplot-transform-doesnt-work – Pablo Jul 04 '13 at 21:59
  • Thank you very much to both of you. I could do what I was looking for with zoomed_inset_axis from AxesGrid as Bill suggested, and also with Pablo's function. Finally I'm using Pablo's function as it is more confortable than the AxesGrid to plot all the small figures with the same size in all subplots. Thanks again! – Argitzen Jul 05 '13 at 09:09

4 Answers4

67

I wrote a function very similar to plt.axes. You could use it for plotting yours sub-subplots. There is an example...

import matplotlib.pyplot as plt
import numpy as np

#def add_subplot_axes(ax,rect,facecolor='w'): # matplotlib 2.0+
def add_subplot_axes(ax,rect,axisbg='w'):
    fig = plt.gcf()
    box = ax.get_position()
    width = box.width
    height = box.height
    inax_position  = ax.transAxes.transform(rect[0:2])
    transFigure = fig.transFigure.inverted()
    infig_position = transFigure.transform(inax_position)    
    x = infig_position[0]
    y = infig_position[1]
    width *= rect[2]
    height *= rect[3]  # <= Typo was here
    #subax = fig.add_axes([x,y,width,height],facecolor=facecolor)  # matplotlib 2.0+
    subax = fig.add_axes([x,y,width,height],axisbg=axisbg)
    x_labelsize = subax.get_xticklabels()[0].get_size()
    y_labelsize = subax.get_yticklabels()[0].get_size()
    x_labelsize *= rect[2]**0.5
    y_labelsize *= rect[3]**0.5
    subax.xaxis.set_tick_params(labelsize=x_labelsize)
    subax.yaxis.set_tick_params(labelsize=y_labelsize)
    return subax
    
def example1():
    fig = plt.figure(figsize=(10,10))
    ax = fig.add_subplot(111)
    rect = [0.2,0.2,0.7,0.7]
    ax1 = add_subplot_axes(ax,rect)
    ax2 = add_subplot_axes(ax1,rect)
    ax3 = add_subplot_axes(ax2,rect)
    plt.show()

def example2():
    fig = plt.figure(figsize=(10,10))
    axes = []
    subpos = [0.2,0.6,0.3,0.3]
    x = np.linspace(-np.pi,np.pi)
    for i in range(4):
        axes.append(fig.add_subplot(2,2,i))
    for axis in axes:
        axis.set_xlim(-np.pi,np.pi)
        axis.set_ylim(-1,3)
        axis.plot(x,np.sin(x))
        subax1 = add_subplot_axes(axis,subpos)
        subax2 = add_subplot_axes(subax1,subpos)
        subax1.plot(x,np.sin(x))
        subax2.plot(x,np.sin(x))
if __name__ == '__main__':
    example2()
    plt.show()

enter image description here

steinmig
  • 45
  • 5
Pablo
  • 2,443
  • 1
  • 20
  • 32
63

You can now do this with matplotlibs inset_axes method (see docs):

from mpl_toolkits.axes_grid.inset_locator import inset_axes
inset_axes = inset_axes(parent_axes,
                    width="30%", # width = 30% of parent_bbox
                    height=1., # height : 1 inch
                    loc=3)

Update: As Kuti pointed out, for matplotlib version 2.1 or above, you should change the import statement to:

from mpl_toolkits.axes_grid1.inset_locator import inset_axes

There is now also a full example showing all different options available.

ImportanceOfBeingErnest
  • 321,279
  • 53
  • 665
  • 712
jrieke
  • 975
  • 10
  • 15
31

From matplotlib 3.0 on, you can use matplotlib.axes.Axes.inset_axes:

import numpy as np
import matplotlib.pyplot as plt

fig, axes = plt.subplots(2,2)

for ax in axes.flat:
    ax.plot(np.arange(11),np.arange(11))

    ins = ax.inset_axes([0.7,0.7,0.2,0.2])

plt.show()

enter image description here

The difference to mpl_toolkits.axes_grid.inset_locator.inset_axes mentionned in @jrieke's answer is that this is a lot easier to use (no extra imports etc.), but has the drawback of being slightly less flexible (no argument for padding or corner locations).

ImportanceOfBeingErnest
  • 321,279
  • 53
  • 665
  • 712
17

source: https://matplotlib.org/examples/pylab_examples/axes_demo.html

enter image description here

from mpl_toolkits.axes_grid.inset_locator import inset_axes
import matplotlib.pyplot as plt
import numpy as np

# create some data to use for the plot
dt = 0.001
t = np.arange(0.0, 10.0, dt)
r = np.exp(-t[:1000]/0.05)               # impulse response
x = np.random.randn(len(t))
s = np.convolve(x, r)[:len(x)]*dt  # colored noise

fig = plt.figure(figsize=(9, 4),facecolor='white')
ax = fig.add_subplot(121)
# the main axes is subplot(111) by default
plt.plot(t, s)
plt.axis([0, 1, 1.1*np.amin(s), 2*np.amax(s)])
plt.xlabel('time (s)')
plt.ylabel('current (nA)')
plt.title('Subplot 1: \n Gaussian colored noise')

# this is an inset axes over the main axes
inset_axes = inset_axes(ax, 
                    width="50%", # width = 30% of parent_bbox
                    height=1.0, # height : 1 inch
                    loc=1)
n, bins, patches = plt.hist(s, 400, normed=1)
#plt.title('Probability')
plt.xticks([])
plt.yticks([])

ax = fig.add_subplot(122)
# the main axes is subplot(111) by default
plt.plot(t, s)
plt.axis([0, 1, 1.1*np.amin(s), 2*np.amax(s)])
plt.xlabel('time (s)')
plt.ylabel('current (nA)')
plt.title('Subplot 2: \n Gaussian colored noise')

plt.tight_layout()
plt.show()
Frank Wang
  • 1,462
  • 3
  • 17
  • 39