9

I am wondering if there is an easy way to match (register) 2 clouds of 2d points.

Let's say I have an object represented by points and an cluttered 2nd image with the object points and noise (noise in a way of points that are useless).

Basically the object can be 2d rotated as well as translated and scaled.

I know there is the ICP - Algorithm but I think that this is not a good approach due to high noise.

I hope that you understand what i mean. please ask if (im sure it is) anything is unclear.

cheers

skooorty
  • 91
  • 1
  • 1
  • 2
  • What about the points are you trying to match? Just the location (x,y)? – jjfine Apr 08 '11 at 19:15
  • That sounds really, really hard. Translation alone is bad enough with the noise, but rotation and even scaling? That's essentially just general image recognition, but without any low-frequency data to help get oriented. – Potatoswatter Apr 08 '11 at 19:18

7 Answers7

5

Here is the function that finds translation and rotation. Generalization to scaling, weighted points, and RANSAC are straight forward. I used openCV library for visualization and SVD. The function below combines data generation, Unit Test , and actual solution.

 // rotation and translation in 2D from point correspondences
 void rigidTransform2D(const int N) {

// Algorithm: http://igl.ethz.ch/projects/ARAP/svd_rot.pdf

const bool debug = false;      // print more debug info
const bool add_noise = true; // add noise to imput and output
srand(time(NULL));           // randomize each time

/*********************************
 * Creat data with some noise
 **********************************/

// Simulated transformation
Point2f T(1.0f, -2.0f);
float a = 30.0; // [-180, 180], see atan2(y, x)
float noise_level = 0.1f;
cout<<"True parameters: rot = "<<a<<"deg., T = "<<T<<
        "; noise level = "<<noise_level<<endl;

// noise
vector<Point2f> noise_src(N), noise_dst(N);
for (int i=0; i<N; i++) {
    noise_src[i] = Point2f(randf(noise_level), randf(noise_level));
    noise_dst[i] = Point2f(randf(noise_level), randf(noise_level));
}

// create data with noise
vector<Point2f> src(N), dst(N);
float Rdata = 10.0f; // radius of data
float cosa = cos(a*DEG2RAD);
float sina = sin(a*DEG2RAD);
for (int i=0; i<N; i++) {

    // src
    float x1 = randf(Rdata);
    float y1 = randf(Rdata);
    src[i] = Point2f(x1,y1);
    if (add_noise)
        src[i] += noise_src[i];

    // dst
    float x2 = x1*cosa - y1*sina;
    float y2 = x1*sina + y1*cosa;
    dst[i] = Point2f(x2,y2) + T;
    if (add_noise)
        dst[i] += noise_dst[i];

    if (debug)
        cout<<i<<": "<<src[i]<<"---"<<dst[i]<<endl;
}

// Calculate data centroids
Scalar centroid_src = mean(src);
Scalar centroid_dst = mean(dst);
Point2f center_src(centroid_src[0], centroid_src[1]);
Point2f center_dst(centroid_dst[0], centroid_dst[1]);
if (debug)
    cout<<"Centers: "<<center_src<<", "<<center_dst<<endl;

/*********************************
 * Visualize data
 **********************************/

// Visualization
namedWindow("data", 1);
float w = 400, h = 400;
Mat Mdata(w, h, CV_8UC3); Mdata = Scalar(0);
Point2f center_img(w/2, h/2);

float scl = 0.4*min(w/Rdata, h/Rdata); // compensate for noise
scl/=sqrt(2); // compensate for rotation effect
Point2f dT = (center_src+center_dst)*0.5; // compensate for translation

for (int i=0; i<N; i++) {
    Point2f p1(scl*(src[i] - dT));
    Point2f p2(scl*(dst[i] - dT));
    // invert Y axis
    p1.y = -p1.y; p2.y = -p2.y;
    // add image center
    p1+=center_img; p2+=center_img;
    circle(Mdata, p1, 1, Scalar(0, 255, 0));
    circle(Mdata, p2, 1, Scalar(0, 0, 255));
    line(Mdata, p1, p2, Scalar(100, 100, 100));

}

/*********************************
 * Get 2D rotation and translation
 **********************************/

markTime();

// subtract centroids from data
for (int i=0; i<N; i++) {
    src[i] -= center_src;
    dst[i] -= center_dst;
}

// compute a covariance matrix
float Cxx = 0.0, Cxy = 0.0, Cyx = 0.0, Cyy = 0.0;
for (int i=0; i<N; i++) {
    Cxx += src[i].x*dst[i].x;
    Cxy += src[i].x*dst[i].y;
    Cyx += src[i].y*dst[i].x;
    Cyy += src[i].y*dst[i].y;
}
Mat Mcov = (Mat_<float>(2, 2)<<Cxx, Cxy, Cyx, Cyy);
if (debug)
    cout<<"Covariance Matrix "<<Mcov<<endl;

// SVD
cv::SVD svd;
svd = SVD(Mcov, SVD::FULL_UV);
if (debug) {
    cout<<"U = "<<svd.u<<endl;
    cout<<"W = "<<svd.w<<endl;
    cout<<"V transposed = "<<svd.vt<<endl;
}

// rotation = V*Ut
Mat V = svd.vt.t();
Mat Ut = svd.u.t();
float det_VUt = determinant(V*Ut);
Mat W = (Mat_<float>(2, 2)<<1.0, 0.0, 0.0, det_VUt);
float rot[4];
Mat R_est(2, 2, CV_32F, rot);
R_est = V*W*Ut;
if (debug)
    cout<<"Rotation matrix: "<<R_est<<endl;

float cos_est = rot[0];
float sin_est = rot[2];
float ang = atan2(sin_est, cos_est);

// translation = mean_dst - R*mean_src
Point2f center_srcRot = Point2f(
        cos_est*center_src.x - sin_est*center_src.y,
        sin_est*center_src.x + cos_est*center_src.y);
Point2f T_est = center_dst - center_srcRot;

// RMSE
double RMSE = 0.0;
for (int i=0; i<N; i++) {
    Point2f dst_est(
            cos_est*src[i].x - sin_est*src[i].y,
            sin_est*src[i].x + cos_est*src[i].y);
    RMSE += SQR(dst[i].x - dst_est.x) + SQR(dst[i].y - dst_est.y);
}
if (N>0)
    RMSE = sqrt(RMSE/N);

// Final estimate msg
cout<<"Estimate = "<<ang*RAD2DEG<<"deg., T = "<<T_est<<"; RMSE = "<<RMSE<<endl;

// show image
printTime(1);
imshow("data", Mdata);
waitKey(-1);

return;
} // rigidTransform2D()

// --------------------------- 3DOF

// calculates squared error from two point mapping; assumes rotation around Origin.
inline float sqErr_3Dof(Point2f p1, Point2f p2,
        float cos_alpha, float sin_alpha, Point2f T) {

    float x2_est = T.x + cos_alpha * p1.x - sin_alpha * p1.y;
    float y2_est = T.y + sin_alpha * p1.x + cos_alpha * p1.y;
    Point2f p2_est(x2_est, y2_est);
    Point2f dp = p2_est-p2;
    float sq_er = dp.dot(dp); // squared distance

    //cout<<dp<<endl;
    return sq_er;
}

// calculate RMSE for point-to-point metrics
float RMSE_3Dof(const vector<Point2f>& src, const vector<Point2f>& dst,
        const float* param, const bool* inliers, const Point2f center) {

    const bool all_inliers = (inliers==NULL); // handy when we run QUADRTATIC will all inliers
    unsigned int n = src.size();
    assert(n>0 && n==dst.size());

    float ang_rad = param[0];
    Point2f T(param[1], param[2]);
    float cos_alpha = cos(ang_rad);
    float sin_alpha = sin(ang_rad);

    double RMSE = 0.0;
    int ninliers = 0;
    for (unsigned int i=0; i<n; i++) {
        if (all_inliers || inliers[i]) {
            RMSE += sqErr_3Dof(src[i]-center, dst[i]-center, cos_alpha, sin_alpha, T);
            ninliers++;
        }
    }

    //cout<<"RMSE = "<<RMSE<<endl;
    if (ninliers>0)
        return sqrt(RMSE/ninliers);
    else
        return LARGE_NUMBER;
}

// Sets inliers and returns their count
inline int setInliers3Dof(const vector<Point2f>& src, const vector <Point2f>& dst,
        bool* inliers,
        const float* param,
        const float max_er,
        const Point2f center) {

    float ang_rad = param[0];
    Point2f T(param[1], param[2]);

    // set inliers
    unsigned int ninliers = 0;
    unsigned int n = src.size();
    assert(n>0 && n==dst.size());

    float cos_ang = cos(ang_rad);
    float sin_ang = sin(ang_rad);
    float max_sqErr = max_er*max_er; // comparing squared values

    if (inliers==NULL) {

        // just get the number of inliers (e.g. after QUADRATIC fit only)
        for (unsigned int i=0; i<n; i++) {

            float sqErr = sqErr_3Dof(src[i]-center, dst[i]-center, cos_ang, sin_ang, T);
            if ( sqErr < max_sqErr)
                ninliers++;
        }
    } else  {

        // get the number of inliers and set them (e.g. for RANSAC)
        for (unsigned int i=0; i<n; i++) {

            float sqErr = sqErr_3Dof(src[i]-center, dst[i]-center, cos_ang, sin_ang, T);
            if ( sqErr < max_sqErr) {
                inliers[i] = 1;
                ninliers++;
            } else {
                inliers[i] = 0;
            }
        }
    }

    return ninliers;
}

// fits 3DOF (rotation and translation in 2D) with least squares.
float fit3DofQUADRATICold(const vector<Point2f>& src, const vector<Point2f>& dst,
        float* param, const bool* inliers, const Point2f center) {

    const bool all_inliers = (inliers==NULL); // handy when we run QUADRTATIC will all inliers
    unsigned int n = src.size();
    assert(dst.size() == n);

    // count inliers
    int ninliers;
    if (all_inliers) {
        ninliers = n;
    } else {
        ninliers = 0;
        for (unsigned int i=0; i<n; i++){
            if (inliers[i])
                ninliers++;
        }
    }

    // under-dermined system
    if (ninliers<2) {
        //      param[0] = 0.0f; // ?
        //      param[1] = 0.0f;
        //      param[2] = 0.0f;
        return LARGE_NUMBER;
    }

    /*
     * x1*cosx(a)-y1*sin(a) + Tx = X1
     * x1*sin(a)+y1*cos(a) + Ty = Y1
     *
     * approximation for small angle a (radians) sin(a)=a, cos(a)=1;
     *
     * x1*1 - y1*a + Tx = X1
     * x1*a + y1*1 + Ty = Y1
     *
     * in matrix form M1*h=M2
     *
     *  2n x 4       4 x 1   2n x 1
     *
     * -y1 1 0 x1  *   a   =  X1
     *  x1 0 1 y1      Tx     Y1
     *                 Ty
     *                 1=Z
     *  ----------------------------
     *  src1         res      src2
     */

    //  4 x 1
    float res_ar[4]; // alpha, Tx, Ty, 1
    Mat res(4, 1, CV_32F, res_ar); // 4 x 1

    // 2n x 4
    Mat src1(2*ninliers, 4, CV_32F); // 2n x 4

    // 2n x 1
    Mat src2(2*ninliers, 1, CV_32F); // 2n x 1: [X1, Y1, X2, Y2, X3, Y3]'

    for (unsigned int i=0, row_cnt = 0; i<n; i++) {

        // use inliers only
        if (all_inliers || inliers[i]) {

            float x = src[i].x - center.x;
            float y = src[i].y - center.y;

            // first row

            // src1
            float* rowPtr = src1.ptr<float>(row_cnt);
            rowPtr[0] = -y;
            rowPtr[1] = 1.0f;
            rowPtr[2] = 0.0f;
            rowPtr[3] = x;

            // src2
            src2.at<float> (0, row_cnt) = dst[i].x - center.x;

            // second row
            row_cnt++;

            // src1
            rowPtr = src1.ptr<float>(row_cnt);
            rowPtr[0] = x;
            rowPtr[1] = 0.0f;
            rowPtr[2] = 1.0f;
            rowPtr[3] = y;

            // src2
            src2.at<float> (0, row_cnt) = dst[i].y - center.y;
        }
    }

    cv::solve(src1, src2, res, DECOMP_SVD);

    // estimators
    float alpha_est;
    Point2f T_est;

    // original
    alpha_est = res.at<float>(0, 0);
    T_est = Point2f(res.at<float>(1, 0), res.at<float>(2, 0));

    float Z = res.at<float>(3, 0);
    if (abs(Z-1.0) > 0.1) {
        //cout<<"Bad Z in fit3DOF(), Z should be close to 1.0 = "<<Z<<endl;
        //return LARGE_NUMBER;
    }
    param[0] = alpha_est; // rad
    param[1] = T_est.x;
    param[2] = T_est.y;

    // calculate RMSE
    float RMSE = RMSE_3Dof(src, dst, param, inliers, center);
    return RMSE;
} // fit3DofQUADRATICOLd()

// fits 3DOF (rotation and translation in 2D) with least squares.
float fit3DofQUADRATIC(const vector<Point2f>& src_, const vector<Point2f>& dst_,
        float* param, const bool* inliers, const Point2f center) {

    const bool debug = false;                   // print more debug info
    const bool all_inliers = (inliers==NULL);   // handy when we run QUADRTATIC will all inliers
    assert(dst_.size() == src_.size());
    int N = src_.size();

    // collect inliers
    vector<Point2f> src, dst;
    int ninliers;
    if (all_inliers) {
        ninliers = N;
        src = src_; // copy constructor
        dst = dst_;
    } else {
        ninliers = 0;
        for (int i=0; i<N; i++){
            if (inliers[i]) {
                ninliers++;
                src.push_back(src_[i]);
                dst.push_back(dst_[i]);
            }
        }
    }
    if (ninliers<2) {
        param[0] = 0.0f; // default return when there is not enough points
        param[1] = 0.0f;
        param[2] = 0.0f;
        return LARGE_NUMBER;
    }

    /* Algorithm: Least-Square Rigid Motion Using SVD by Olga Sorkine
     * http://igl.ethz.ch/projects/ARAP/svd_rot.pdf
     *
     * Subtract centroids, calculate SVD(cov),
     * R = V[1, det(VU')]'U', T = mean_q-R*mean_p
     */

    // Calculate data centroids
    Scalar centroid_src = mean(src);
    Scalar centroid_dst = mean(dst);
    Point2f center_src(centroid_src[0], centroid_src[1]);
    Point2f center_dst(centroid_dst[0], centroid_dst[1]);
    if (debug)
        cout<<"Centers: "<<center_src<<", "<<center_dst<<endl;

    // subtract centroids from data
    for (int i=0; i<ninliers; i++) {
        src[i] -= center_src;
        dst[i] -= center_dst;
    }

    // compute a covariance matrix
    float Cxx = 0.0, Cxy = 0.0, Cyx = 0.0, Cyy = 0.0;
    for (int i=0; i<ninliers; i++) {
        Cxx += src[i].x*dst[i].x;
        Cxy += src[i].x*dst[i].y;
        Cyx += src[i].y*dst[i].x;
        Cyy += src[i].y*dst[i].y;
    }
    Mat Mcov = (Mat_<float>(2, 2)<<Cxx, Cxy, Cyx, Cyy);
    Mcov /= (ninliers-1);
    if (debug)
        cout<<"Covariance-like Matrix "<<Mcov<<endl;

    // SVD of covariance
    cv::SVD svd;
    svd = SVD(Mcov, SVD::FULL_UV);
    if (debug) {
        cout<<"U = "<<svd.u<<endl;
        cout<<"W = "<<svd.w<<endl;
        cout<<"V transposed = "<<svd.vt<<endl;
    }

    // rotation (V*Ut)
    Mat V = svd.vt.t();
    Mat Ut = svd.u.t();
    float det_VUt = determinant(V*Ut);
    Mat W = (Mat_<float>(2, 2)<<1.0, 0.0, 0.0, det_VUt);
    float rot[4];
    Mat R_est(2, 2, CV_32F, rot);
    R_est = V*W*Ut;
    if (debug)
        cout<<"Rotation matrix: "<<R_est<<endl;

    float cos_est = rot[0];
    float sin_est = rot[2];
    float ang = atan2(sin_est, cos_est);

    // translation (mean_dst - R*mean_src)
    Point2f center_srcRot = Point2f(
            cos_est*center_src.x - sin_est*center_src.y,
            sin_est*center_src.x + cos_est*center_src.y);
    Point2f T_est = center_dst - center_srcRot;

    // Final estimate msg
    if (debug)
        cout<<"Estimate = "<<ang*RAD2DEG<<"deg., T = "<<T_est<<endl;

    param[0] = ang; // rad
    param[1] = T_est.x;
    param[2] = T_est.y;

    // calculate RMSE
    float RMSE = RMSE_3Dof(src_, dst_, param, inliers, center);
    return RMSE;
} // fit3DofQUADRATIC()

// RANSAC fit in 3DOF: 1D rot and 2D translation (maximizes the number of inliers)
// NOTE: no data normalization is currently performed
float fit3DofRANSAC(const vector<Point2f>& src, const vector<Point2f>& dst,
        float* best_param,  bool* inliers,
        const Point2f center ,
        const float inlierMaxEr,
        const int niter) {

    const int ITERATION_TO_SETTLE = 2;    // iterations to settle inliers and param
    const float INLIERS_RATIO_OK = 0.95f;  // stopping criterion

    // size of data vector
    unsigned int N = src.size();
    assert(N==dst.size());

    // unrealistic case
    if(N<2) {
        best_param[0] = 0.0f; // ?
        best_param[1] = 0.0f;
        best_param[2] = 0.0f;
        return LARGE_NUMBER;
    }

    unsigned int ninliers;                 // current number of inliers
    unsigned int best_ninliers = 0;     // number of inliers
    float best_rmse = LARGE_NUMBER;         // error
    float cur_rmse;                         // current distance error
    float param[3];                         // rad, Tx, Ty
    vector <Point2f> src_2pt(2), dst_2pt(2);// min set of 2 points (1 correspondence generates 2 equations)
    srand (time(NULL));

    // iterations
    for (int iter = 0; iter<niter; iter++) {

#ifdef DEBUG_RANSAC
        cout<<"iteration "<<iter<<": ";
#endif

        // 1. Select a random set of 2 points (not obligatory inliers but valid)
        int i1, i2;
        i1 = rand() % N; // [0, N[
        i2 = i1;
        while (i2==i1) {
            i2 = rand() % N;
        }
        src_2pt[0] = src[i1]; // corresponding points
        src_2pt[1] = src[i2];
        dst_2pt[0] = dst[i1];
        dst_2pt[1] = dst[i2];
        bool two_inliers[] = {true, true};

        // 2. Quadratic fit for 2 points
        cur_rmse = fit3DofQUADRATIC(src_2pt, dst_2pt, param, two_inliers, center);

        // 3. Recalculate to settle params and inliers using a larger set
        for (int iter2=0; iter2<ITERATION_TO_SETTLE; iter2++) {
            ninliers = setInliers3Dof(src, dst, inliers, param, inlierMaxEr, center);   // changes inliers
            cur_rmse = fit3DofQUADRATIC(src, dst, param, inliers, center);              // changes cur_param
        }

        // potential ill-condition or large error
        if (ninliers<2) {
#ifdef DEBUG_RANSAC
            cout<<" !!! less than 2 inliers "<<endl;
#endif
            continue;
        } else {
#ifdef DEBUG_RANSAC
            cout<<" "<<ninliers<<" inliers; ";
#endif
        }


#ifdef DEBUG_RANSAC
        cout<<"; recalculate: RMSE = "<<cur_rmse<<", "<<ninliers <<" inliers";
#endif


        // 4. found a better solution?
        if (ninliers > best_ninliers) {
            best_ninliers = ninliers;
            best_param[0] = param[0];
            best_param[1] = param[1];
            best_param[2] = param[2];
            best_rmse = cur_rmse;


#ifdef DEBUG_RANSAC
            cout<<" --- Solution improved: "<<
                    best_param[0]<<", "<<best_param[1]<<", "<<param[2]<<endl;
#endif
            // exit condition
            float inlier_ratio = (float)best_ninliers/N;
            if (inlier_ratio > INLIERS_RATIO_OK) {
#ifdef DEBUG_RANSAC
                cout<<"Breaking early after "<< iter+1<<
                        " iterations; inlier ratio = "<<inlier_ratio<<endl;
#endif
                break;
            }
        } else {
#ifdef DEBUG_RANSAC
            cout<<endl;
#endif
        }


    } // iterations

    // 5. recreate inliers for the best parameters
    ninliers = setInliers3Dof(src, dst, inliers, best_param, inlierMaxEr, center);

    return best_rmse;
} // fit3DofRANSAC()
Vlad
  • 4,425
  • 1
  • 30
  • 39
  • Have you finished your RANSAC for this yet? – Vit Dec 29 '14 at 07:02
  • I did long time ago. I will append it to the code above, though in general you have to figure it out on your own. – Vlad Jan 05 '15 at 23:18
  • Thank you. It is not a problem to write RANSAC but it is better to take a look at the well-tested code before. – Vit Jan 05 '15 at 23:36
  • Unfortunately, this only works for "two sets of corresponding points". In the OP's case one of the sets is larger, and in general the centroids will not coincide, causing the method to fail. –  Nov 16 '19 at 22:34
  • There is always some kind of matching going on, so at the end you deal with matched points anyway. To incorporate matching process into algorithm when starting with clouds of different size, I can recommend GeometricHashing (https://en.wikipedia.org/wiki/Geometric_hashing). It provides the invariance in terms of translation, rotation and scaling, and to smaller degree, affine distortions. One application of this would be to find a constellation (small set of point) in the open sky (large set of points). – Vlad Mar 28 '20 at 22:25
2

Let me first make sure I'm interpreting your question correctly. You have two sets of 2D points, one of which contains all "good" points corresponding to some object of interest, and one of which contains those points under an affine transformation with noisy points added. Right?

If that's correct, then there is a fairly reliable and efficient way to both reject noisy points and determine the transformation between your points of interest. The algorithm that is usually used to reject noisy points ("outliers") is known as RANSAC, and the algorithm used to determine the transformation can take several forms, but the most current state of the art is known as the five-point algorithm and can be found here -- a MATLAB implementation can be found here.

Unfortunately I don't know of a mature implementation of both of those combined; you'll probably have to do some work of your own to implement RANSAC and integrate it with the five point algorithm.

Edit:

Actually, OpenCV has an implementation that is overkill for your task (meaning it will work but will take more time than necessary) but is ready to work out of the box. The function of interest is called cv::findFundamentalMat.

Rui Marques
  • 8,567
  • 3
  • 60
  • 91
Sean
  • 3,002
  • 1
  • 26
  • 32
1

I believe you are looking for something like David Lowe's SIFT (Scale Invariant Feature Transform). Other option is SURF (SIFT is patent protected). The OpenCV computer library presents a SURF implementation

TH.
  • 1,738
  • 1
  • 12
  • 15
  • 1
    Such image features are excellent for matching images, but are useless for sets of 2D points. – Sean Jun 27 '11 at 02:27
  • @Sean If the 2D points are rasterized into an image, then these image registration algorithms would indeed work. You lose some precision by essentially quantizing the point locations, but that may be acceptable. – btown Jul 01 '11 at 20:52
1

I would try and use distance geometry (http://en.wikipedia.org/wiki/Distance_geometry) for this

Generate a scalar for each point by summing its distances to all neighbors within a certain radius. Though not perfect, this will be good discriminator for each point.

Then put all the scalars in a map that allows a point (p) to be retrieve by its scalar (s) plus/minus some delta
M(s+delta) = p (e.g K-D Tree) (http://en.wikipedia.org/wiki/Kd-tree)

Put all the reference set of 2D points in the map

On the other (test) set of 2D points:
foreach test scaling (esp if you have a good idea what typical scaling values are)
...scale each point by S
...recompute the scalars of the test set of points
......for each point P in test set (or perhaps a sample for faster method)
.........lookup point in reference scalar map within some delta
.........discard P if no mapping found
.........else foreach P' point found
............examine neighbors of P and see if they have corresponding scalars in the reference map within some delta (i.e reference point has neighbors with approx same value)
......... if all points tested have a mapping in the reference set, you have found a mapping of test point P onto reference point P' -> record mapping of test point to reference point ......discard scaling if no mappings recorded

Note this is trivially parallelized in several different places

This is off the top of my head, drawing from research I did years ago. It lacks fine details but the general idea is clear: find points in the noisy (test) graph whose distances to their closest neighbors are roughly the same as the reference set. Noisy graphs will have to measure the distances with a larger allowed error that less noisy graphs.

The algorithm works perfectly for graphs with no noise.

Edit: there is a refinement for the algorithm that doesn't require looking at different scalings. When computing the scalar for each point, use a relative distance measure instead. This will be invariant of transform

  • This description looks somehow similar to PCL's StatisticalOutlierRemoval (although this one is for 3D points): http://pointclouds.org/documentation/tutorials/statistical_outlier.php – Rui Marques Apr 04 '14 at 15:11
0

From C++, you could use ITK to do the image registration. It includes many registration functions that will work in the presence of noise.

Reed Copsey
  • 554,122
  • 78
  • 1,158
  • 1,373
0

The KLT (Kanade Lucas Tomasi) Feature Tracker makes a Affine Consistency Check of tracked features. The Affine Consistency Check takes into account translation, rotation and scaling. I don't know if it is of help to you, because you can't use the function (which calculates the affine transformation of a rectangular region) directly. But maybe you can learn from the documentation and source-code, how the affine transformation can be calculated and adapt it to your problem (clouds of points instead of a rectangular region).

Christian Ammer
  • 7,464
  • 6
  • 51
  • 108
-1

You want want the Denton-Beveridge point matching algorithm. Source code at the bottom of the page linked below, and there is also a paper that explain the algorithm and why Ransac is a bad choice for this problem.

http://jasondenton.me/pntmatch.html

user693653
  • 19
  • 2