It will probably work with most of the compilers but it still is undefined behavior. For the C language these x
are two different objects, one has ended its lifetime, so you have UB.
More seriously, some compilers may decide to fool you in a different way than you expect.
The C standard says
Two pointers compare equal if and only if both are null pointers, both
are pointers to the same object (including a pointer to an object and
a subobject at its beginning) or function, both are pointers to one
past the last element of the same array object, or one is a pointer to
one past the end of one array object and the other is a pointer to the
start of a different array object that happens to immediately follow
the first array object in the address space.
Note in particular the phrase "both are pointers to the same object". In the sense of the standard the two "x"s are not the same object. They may happen to be realized in the same memory location, but this is to the discretion of the compiler. Since they are clearly two distinct objects, declared in different scopes the comparison should in fact never be true. So an optimizer might well cut away that branch completely.
Another aspect that has not yet been discussed of all that is that the validity of this depends on the "lifetime" of the objects and not the scope. If you'd add a possible jump into that scope
{
int x = 0;
p = &x;
BLURB: ;
}
...
if (...)
...
if (something) goto BLURB;
the lifetime would extend as long as the scope of the first x
is reachable. Then everything is valid behavior, but still your test would always be false, and optimized out by a decent compiler.
From all that you see that you better leave it at argument for UB, and don't play such games in real code.