In general, to access the value of the indices, you can use np.meshgrid
:
i, j, k = np.meshgrid(*map(np.arange, m.shape), indexing='ij')
m.mask = (i == j)
The advantage of this method is that it works for arbitrary boolean functions on i
, j
, and k
. It is a bit slower than the use of the identity
special case.
In [56]: %%timeit
....: i, j, k = np.meshgrid(*map(np.arange, m.shape), indexing='ij')
....: i == j
10000 loops, best of 3: 96.8 µs per loop
As @Jaime points out, meshgrid
supports a sparse
option, which doesn't do so much duplication, but requires a bit more care in some cases because they don't broadcast. It will save memory and speed things up a little. For example,
In [77]: x = np.arange(5)
In [78]: np.meshgrid(x, x)
Out[78]:
[array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]),
array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]])]
In [79]: np.meshgrid(x, x, sparse=True)
Out[79]:
[array([[0, 1, 2, 3, 4]]),
array([[0],
[1],
[2],
[3],
[4]])]
So, you can use the sparse
version as he says, but you must force the broadcasting as such:
i, j, k = np.meshgrid(*map(np.arange, m.shape), indexing='ij', sparse=True)
m.mask = np.repeat(i==j, k.size, axis=2)
And the speedup:
In [84]: %%timeit
....: i, j, k = np.meshgrid(*map(np.arange, m.shape), indexing='ij', sparse=True)
....: np.repeat(i==j, k.size, axis=2)
10000 loops, best of 3: 73.9 µs per loop