Even though monads can be implemented in Java, any computation involving them is doomed to become a messy mix of generics and curly braces.
I'd say that Java is definitely not the language to use in order to illustrate their working or to study their meaning and essence. For this purpose it is far better to use JavaScript or to pay some extra price and learn Haskell.
Anyway, I am signaling you that I just implemented a state monad using the new Java 8 lambdas. It's definitely a pet project, but it works on a non-trivial test case.
You may find it presented at my blog, but I'll give you some details here.
A state monad is basically a function from a state to a pair (state,content). You usually give the state a generic type S and the content a generic type A.
Because Java does not have pairs we have to model them using a specific class, let's call it Scp (state-content pair), which in this case will have generic type Scp<S,A>
and a constructor new Scp<S,A>(S state,A content)
. After doing that we can say that the monadic function will have type
java.util.function.Function<S,Scp<S,A>>
which is a @FunctionalInterface
. That's to say that its one and only implementation method can be invoked without naming it, passing a lambda expression with the right type.
The class StateMonad<S,A>
is mainly a wrapper around the function. Its constructor may be invoked e.g. with
new StateMonad<Integer, String>(n -> new Scp<Integer, String>(n + 1, "value"));
The state monad stores the function as an instance variable. It is then necessary to provide a public method to access it and feed it the state. I decided to call it s2scp
("state to state-content pair").
To complete the definition of the monad you have to provide a unit (aka return) and a bind (aka flatMap) method. Personally I prefer to specify unit as static, whereas bind is an instance member.
In the case of the state monad, unit gotta be the following:
public static <S, A> StateMonad<S, A> unit(A a) {
return new StateMonad<S, A>((S s) -> new Scp<S, A>(s, a));
}
while bind (as instance member) is:
public <B> StateMonad<S, B> bind(final Function<A, StateMonad<S, B>> famb) {
return new StateMonad<S, B>((S s) -> {
Scp<S, A> currentPair = this.s2scp(s);
return famb(currentPair.content).s2scp(currentPair.state);
});
}
You notice that bind must introduce a generic type B, because it is the mechanism that allows the chaining of heterogeneous state monads and gives this and any other monad the remarkable capability to move the computation from type to type.
I'd stop here with the Java code. The complex stuff is in the GitHub project. Compared to previous Java versions, lambdas remove a lot of curly braces, but the syntax is still pretty convoluted.
Just as an aside, I'm showing how similar state monad code may be written in other mainstream languages. In the case of Scala, bind (which in that case must be called flatMap) reads like
def flatMap[A, B](famb: A => State[S, B]) = new State[S, B]((s: S) => {
val (ss: S, aa: A) = this.s2scp(s)
famb(aa).s2scp(ss)
})
whereas the bind in JavaScript is my favorite; 100% functional, lean and mean but -of course- typeless:
var bind = function(famb){
return state(function(s) {
var a = this(s);
return famb(a.value)(a.state);
});
};
<shameless>
I am cutting a few corners here, but if you are interested in the details you will find them on my WP blog.</shameless>