I have the following code written in what would now be called C++98
It implements a doubly linked list, and I was considering updating it to C++11
, but I had the following concerns:
- it would seem that using
std::unique_ptr
makes sense, but there still needs to be other pointers "sharing" the unique_ptr. I.e ifnxt
is a unique_ptr, what do I do withprv
anditerator::it
? - it would seem that it should take an allocator as a template
paraemter, but it will be an allocator of type
T
, not LLNode? - are there any traits, that need to be "registered"?
- if
move
semantics are used, what methods should be defined e.g.operator=() &&
etc.? - what undefined behavior (if any) needs to be corrected?
- what am i not concerned about that I should be?
An accepted answer would briefly discuss the concerns, and then reimplement in C++11
(admittedly, it's a lot of code, but most will be just cut and paste)
A good answer will briefly discuss the concerns, and then reimplement in C++11
the minimal amount to illustrate how to apply those concepts
using standard algorythms would make sense, using a standard container defeats the purpose
appropriate use of C++11 features is encouraged where it makes sense e.g. foreach
as opposed to just using lambdas
because it will work
This is not homework
The code:
template <class T>
class LinkedList
{
class LLNode
{
public:
LLNode() // For Sentinel (requires that T has a default constructor)
{} // set prv/nxt directly
explicit LLNode(const T& x) : data(x) // For normal nodes
{} // set prv/nxt directly
T& get_data() const
{
return const_cast<T&>(data);
}
LLNode * prv;
LLNode * nxt;
private:
T data;
};
public:
class iterator
{
public:
iterator(const LinkedList * p, LLNode * i)
: parent(const_cast<LinkedList *>(p)), it(i)
{}
iterator& operator ++() // pre
{
it = it->nxt;
return *this;
}
iterator operator ++(int) // post
{
iterator ret=*this;
it = it->nxt;
return ret;
}
iterator& operator --() // pre
{
it = it->prv;
return *this;
}
iterator operator --(int) //post
{
iterator ret=*this;
it = it->prv;
return ret;
}
T& operator *() const
{
return it->get_data();
}
T * operator ->() const
{
return &(it->get_data());
}
bool operator ==(const iterator& rhs) const
{
return it == rhs.it;
}
bool operator !=(const iterator& rhs) const
{
return it != rhs.it;
}
void erase()
{
parent->remove(it);
}
void insert_after(const T& x)
{
LLNode * add= new LLNode(x);
parent->insert(it, add);
}
void insert_before(const T& x)
{
LLNode * add= new LLNode(x);
parent->insert(it->prv, add);
}
private:
LinkedList * parent;
LLNode * it;
};
// Linked List class definition
LinkedList()
{
init();
}
LinkedList(const LinkedList& rhs)
{
init();
cp(rhs);
}
~LinkedList()
{
rm();
}
LinkedList operator =(const LinkedList& rhs)
{
if (this != &rhs)
{
rm();
cp(rhs);
}
return *this;
}
iterator begin() const
{
return iterator(this, sentinel.nxt);
}
iterator rbegin() const
{
return iterator(this, sentinel.prv);
}
iterator end() const
{
return iterator(this, const_cast<LLNode *>(&sentinel));
}
T& get_first() const // illegal if is_empty() is true
{
return sentinel.nxt->get_data();
}
T& get_last() const // illegal if is_empty() is true
{
return sentinel.prv->get_data();
}
size_t size() const
{
return count;
}
bool is_empty() const
{
return count==0;
}
void insert_first(const T& x)
{
LLNode * add= new LLNode(x);
insert(&sentinel, add);
}
void insert_last(const T& x)
{
LLNode * add= new LLNode(x);
insert(sentinel.prv, add);
}
void erase_first() // illegal if is_empty() is true
{
remove(sentinel.nxt);
}
void erase_last() // illegal if is_empty() is true
{
remove(sentinel.prv);
}
private:
void insert(LLNode * before, LLNode * added)
{
LLNode * after=before->nxt;
added->prv=before;
added->nxt=after;
before->nxt=added;
after->prv=added;
++count;
}
void remove(LLNode * node) // illegal if is_empty() is true
{
node->prv->nxt=node->nxt;
node->nxt->prv=node->prv;
delete node;
--count;
}
void cp(const LinkedList& rhs)
{
for (iterator i=rhs.begin(); i != rhs.end(); ++i)
{
insert_last(*i);
}
}
void rm()
{
LLNode * run=sentinel.nxt;
while (run != &sentinel)
{
LLNode * dead=run;
run=run->nxt;
delete dead;
}
}
void init()
{
count=0;
sentinel.nxt = sentinel.prv = &sentinel; // setup circular ref
}
LLNode sentinel;
size_t count;
};
EDIT - C++11 attempt based on Mooing Duck's answer :
template <class T, class ALLOC=std::allocator<T> >
class LinkedList
{
struct LLNode
{
LLNode * prv;
LLNode * nxt;
T& get_data() { return data; }
T data;
};
public:
class iterator
{
public:
using difference_type = ptrdiff_t;
using value_type = T;
using reference = T&;
using pointer = T*;
using iterator_category = std::bidirectional_iterator_tag;
iterator(LinkedList * p, LLNode * i) : parent(p), it(i)
{}
iterator& operator ++() // pre
{
it = it->nxt;
return *this;
}
iterator operator ++(int) // post
{
iterator ret=*this;
it = it->nxt;
return ret;
}
iterator& operator --() // pre
{
it = it->prv;
return *this;
}
iterator operator --(int) //post
{
iterator ret=*this;
it = it->prv;
return ret;
}
const T& operator *() const
{
return it->get_data();
}
T& operator *()
{
return it->get_data();
}
const T * operator ->() const
{
return &(it->get_data());
}
T * operator ->()
{
return &(it->get_data());
}
bool operator ==(const iterator& rhs) const
{
return it == rhs.it;
}
bool operator !=(const iterator& rhs) const
{
return it != rhs.it;
}
void erase()
{
parent->remove(it);
}
void insert_after(T& x)
{
auto add=parent->alloc_node(x);
parent->insert(it->nxt, add);
}
void insert_before(T& x)
{
auto add=parent->alloc_node(x);
parent->insert(it, add);
}
private:
LinkedList * parent;
LLNode * it;
};
class const_iterator
{
public:
using difference_type = ptrdiff_t;
using value_type = const T;
using reference = const T&;
using pointer = const T*;
using iterator_category = std::bidirectional_iterator_tag;
const_iterator(const LinkedList * p, const LLNode * i) : parent(p),
it(const_cast<LLNode *>(i))
{}
const_iterator(iterator& cvt) : parent(cvt.parent), it(cvt.it)
{}
const_iterator& operator ++() // pre
{
it = it->nxt;
return *this;
}
const_iterator operator ++(int) // post
{
const_iterator ret=*this;
it = it->nxt;
return ret;
}
const_iterator& operator --() // pre
{
it = it->prv;
return *this;
}
const_iterator operator --(int) //post
{
const_iterator ret=*this;
it = it->prv;
return ret;
}
const T& operator *() const
{
return it->get_data();
}
const T * operator ->() const
{
return &(it->get_data());
}
bool operator ==(const const_iterator& rhs) const
{
return it == rhs.it;
}
bool operator !=(const const_iterator& rhs) const
{
return it != rhs.it;
}
private:
const LinkedList * parent;
LLNode * it;
};
using my_alloc=typename
std::allocator_traits<ALLOC>::template rebind_alloc<LLNode>;
using my_traits=typename
std::allocator_traits<ALLOC>::template rebind_traits<LLNode>;
// Linked List class definition
LinkedList(const ALLOC& alloc = ALLOC() ) : mem(alloc)
{
init();
}
LinkedList(const LinkedList& rhs) : mem(rhs.mem)
{
init();
cp(rhs);
}
LinkedList(LinkedList&& rhs) : mem(rhs.mem) // Move
{
init();
shallow_cp(rhs);
}
~LinkedList()
{
rm();
}
LinkedList operator =(const LinkedList& rhs)
{
if (this != &rhs)
{
rm();
cp(rhs);
}
return *this;
}
LinkedList operator =(LinkedList&& rhs) // Move
{
if (this != &rhs)
{
rm();
shallow_cp(rhs);
}
return *this;
}
const_iterator begin() const
{
return const_iterator(this, sentinel.nxt);
}
iterator begin()
{
return iterator(this, sentinel.nxt);
}
const_iterator rbegin() const
{
return const_iterator(this, sentinel.prv);
}
iterator rbegin()
{
return iterator(this, sentinel.prv);
}
const_iterator end() const
{
return const_iterator(this, &sentinel);
}
iterator end()
{
return iterator(this, &sentinel);
}
T& front() // illegal if is_empty() is true
{
return sentinel.nxt->get_data();
}
T& back() // illegal if is_empty() is true
{
return sentinel.prv->get_data();
}
size_t size() const
{
return count;
}
bool is_empty() const
{
return count==0;
}
void insert_first(const T& x)
{
LLNode * add=alloc_node(x);
insert(&sentinel->nxt, add);
}
void insert_last(const T& x)
{
LLNode * add=alloc_node(x);
insert(&sentinel, add);
}
void erase_first() // illegal if is_empty() is true
{
remove(sentinel.nxt);
}
void erase_last() // illegal if is_empty() is true
{
remove(sentinel.prv);
}
private:
LLNode * alloc_node(const T& x)
{
auto ret = my_traits::allocate(mem,1);
my_traits::construct(mem, &(ret->data), x);
return ret;
}
void unalloc_node(LLNode * dead)
{
my_traits::deallocate(mem, dead, 1);
}
void insert(LLNode * after, LLNode * added)
{
LLNode * before=after->prv;
added->prv=before;
added->nxt=after;
before->nxt=added;
after->prv=added;
++count;
}
void remove(LLNode * node) // illegal if is_empty() is true
{
node->prv->nxt=node->nxt;
node->nxt->prv=node->prv;
unalloc_node(node);
--count;
}
void cp(const LinkedList& rhs)
{
mem = rhs.mem;
for (const_iterator i=rhs.begin(); i != rhs.end(); ++i)
{
insert_last(*i);
}
}
void shallow_cp(LinkedList& rhs)
{
if (rhs.count)
{
count=rhs.count;
sentinel=rhs.sentinel; // shallow copy
// fix the links to the old sentinel
sentinel.nxt.prv=&sentinel;
sentinel.prv.nxt=&sentinel;
rhs.init();
}
}
void rm()
{
LLNode * run=sentinel.nxt;
while (run != &sentinel)
{
LLNode * dead=run;
run=run->nxt;
unalloc_node(dead);
}
}
void init()
{
count=0;
sentinel.nxt = sentinel.prv = &sentinel; // setup circular ref
}
LLNode sentinel;
size_t count;
my_alloc mem;
};
Is anything missing/wrong?