I'm surprised that pandas doesn't offer a native solution for this task.
I don't think that it's efficient to just drop the duplicates if you work with large datasets (as Rian G suggested).
It is probably most efficient to use sets to find the non-overlapping indices. Then use list comprehension to translate from index to 'row location' (boolean), which you need to access rows using iloc[,]. Below you find a function that performs the task. If you don't choose a specific column (col) to check for duplicates, then indexes will be used, as you requested. If you chose a specific column, be aware that existing duplicate entries in 'a' will remain in the result.
import pandas as pd
def append_non_duplicates(a, b, col=None):
if ((a is not None and type(a) is not pd.core.frame.DataFrame) or (b is not None and type(b) is not pd.core.frame.DataFrame)):
raise ValueError('a and b must be of type pandas.core.frame.DataFrame.')
if (a is None):
return(b)
if (b is None):
return(a)
if(col is not None):
aind = a.iloc[:,col].values
bind = b.iloc[:,col].values
else:
aind = a.index.values
bind = b.index.values
take_rows = list(set(bind)-set(aind))
take_rows = [i in take_rows for i in bind]
return(pd.concat([a, b.iloc[take_rows,:]]))
# Usage
a = pd.DataFrame([[1,2,3],[1,5,6],[1,12,13]], index=[1000,2000,5000])
b = pd.DataFrame([[1,2,3],[4,5,6],[7,8,9]], index=[1000,2000,3000])
append_non_duplicates(a,b)
# 0 1 2
# 1000 1 2 3 <- from a
# 2000 1 5 6 <- from a
# 5000 1 12 13 <- from a
# 3000 7 8 9 <- from b
append_non_duplicates(a,b,0)
# 0 1 2
# 1000 1 2 3 <- from a
# 2000 1 5 6 <- from a
# 5000 1 12 13 <- from a
# 2000 4 5 6 <- from b
# 3000 7 8 9 <- from b