TL;DR how to link ATLAS/MKL to existing Numpy without rebuilding.
I have used Numpy to calculate with the large matrix and I found that it is very slow because Numpy only use 1 core to do calculation. After doing a lot of search I figure that my Numpy does not link to some optimized library like ATLAS/MKL. Here is my config of numpy:
>>>import numpy as np
>>>np.__config__.show()
blas_info:
libraries = ['blas']
library_dirs = ['/usr/lib']
language = f77
lapack_info:
libraries = ['lapack']
library_dirs = ['/usr/lib']
language = f77
atlas_threads_info:
NOT AVAILABLE
blas_opt_info:
libraries = ['blas']
library_dirs = ['/usr/lib']
language = f77
define_macros = [('NO_ATLAS_INFO', 1)]
atlas_blas_threads_info:
NOT AVAILABLE
openblas_info:
NOT AVAILABLE
lapack_opt_info:
libraries = ['lapack', 'blas']
library_dirs = ['/usr/lib']
language = f77
define_macros = [('NO_ATLAS_INFO', 1)]
atlas_info:
NOT AVAILABLE
lapack_mkl_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
atlas_blas_info:
NOT AVAILABLE
mkl_info:
NOT AVAILABLE
For this reason, I want to link ATLAS/MKL to Numpy. However, my Numpy is installed from PIP so I don't want to install manually because I want to use the latest version. I have done some search but they are only for building from scratch. For this reason, my question are:
- Are there any way to link ATLAS/MKL to Numpy without rebuilding again?
- I have found that the config info is saved in _config_.py in the installed folder of Numpy. So will modifying it solve my problem? If yes, would you please show me how?