The number of moves in the game is the sum of the total 1's to the left of each 0. (Or conversely the sum of the total 0's to the right of each 1.)
(i.e. 11000 has 2 + 2 + 2 = 6 moves, but 10100 has 1 + 2 + 2 = 5 moves because one 0 has one less 1 to its right)
The winner of the game will be the first player if the total moves in the game is odd, and will be the second player if the number of moves in the game is even.
Proof:
On any given move a player must choose a bit corresponding to
a 0 immediately to the right of a 1. Otherwise the total number of
1's will increase if a bit corresponding to a different 0 is chosen,
and will decrease if a bit corresponding to a 1 is chosen. Such a move
will result in the 1 to the right of the corresponding chosen bit
being moved one position to its right.
Given this observation, each
1 has to move through every 0 to its right; and every 0 it moves
through consumes one move. Note that regardless of the choices either
player makes on any given move, the total number of moves in the game
remains fixed.
Since Harshdeep has already posted a correct solution looping over each bit (the O(n) solution), I'll post an optimized divide and conquer O(log(n)) solution (in C/C++) reminiscent of a similar algorithm to calculate Hamming Weight. Of course using Big-Oh to describe the algorithm here is somewhat dubious since the number of bits is constant.
I've verified that the below code on all 32-bit unsigned integers gives the same result as the linear algorithm. This code runs over all values in order in 45 seconds on my machine, while the linear code takes 6 minutes and 45 seconds.
Code:
bool FastP1Win(unsigned n) {
unsigned t;
// lo: 0/1 count parity
// hi: move count parity
// 00 -> 00 : 00 >>1-> 00 &01-> 00 ; 00 |00-> 00 ; 00 &01-> 00 &00-> 00 *11-> 00 ^00-> 00
// 01 -> 01 : 01 >>1-> 00 &01-> 00 ; 01 |00-> 01 ; 01 &01-> 01 &00-> 00 *11-> 00 ^01-> 01
// 10 -> 11 : 10 >>1-> 01 &01-> 01 ; 10 |01-> 11 ; 10 &01-> 00 &01-> 00 *11-> 00 ^11-> 11
// 11 -> 00 : 11 >>1-> 01 &01-> 01 ; 11 |01-> 11 ; 11 &01-> 01 &01-> 01 *11-> 11 ^11-> 00
t = (n >> 1) & 0x55555555;
n = (n | t) ^ ((n & t & 0x55555555) * 0x3);
t = n << 2; // move every right 2-bit solution to line up with the every left 2-bit solution
n ^= ((n & t & 0x44444444) << 1) ^ t; // merge the right 2-bit solution into the left 2-bit solution
t = (n << 4); // move every right 4-bit solution to line up with the every left 4-bit solution
n ^= ((n & t & 0x40404040) << 1) ^ t; // merge the right 4-bit solution into the left 4-bit solution (stored in the high 2 bits of every 4 bits)
t = n << 8; // move every right 8-bit solution to line up with the every left 8-bit solution
n ^= ((n & t & 0x40004000) << 1) ^ t; // merge the right 8-bit solution into the left 8-bit solution (stored in the high 2 bits of every 8 bits)
t = n << 16; // move every right 16-bit solution to line up with the every left 16-bit solution
n ^= ((n & t) << 1) ^ t; // merge the right 16-bit solution into the left 16-bit solution (stored in the high 2 bits of every 16 bits)
return (int)n < 0; // return the parity of the move count of the overall solution (now stored in the sign bit)
}
Explanation:
To find number of moves in the game, one can divide the problem into smaller pieces and combine the pieces. One must track the number of 0's in any given piece, and also the number of moves in any given piece.
For instance, if we divide the problem into two 16-bit pieces then the following equation expresses the combination of the solutions:
totalmoves = leftmoves + rightmoves + (rightzeros * (16 - leftzeros)); // 16 - leftzeros yields the leftones count
Since we don't care about the total moves, just weather the value is even or odd (the parity) we only need to track the parity.
Here is the truth table for the parity of addition:
even + even = even
even + odd = odd
odd + even = odd
odd + odd = even
Given the above truth table, the parity of addition can be expressed with an XOR.
And the truth table for the parity of multiplication:
even * even = even
even * odd = even
odd * even = even
odd * odd = odd
Given the above truth table, the parity of multiplication can be expressed with an AND.
If we divide the problem into pieces of even size, then the parity of the zero count, and the one count, will always be equal and we need not track or calculate them separately.
At any given stage of the algorithm we need to know the parity of the zero/one count, and the parity of the number of moves in that piece of the solution. This requires two bits. So, lets transform every two bits in the solution so that the high bit becomes the move count parity, and the low bit becomes the zero/one count parity.
This is accomplished with this computation:
unsigned t;
t = (n >> 1) & 0x55555555;
n = (n | t) ^ ((n & t & 0x55555555) * 0x3);
From here we combine every adjacent 2-bit solution into a 4-bit solution (using &
for multiplication, ^
for addition, and the relationships described above), then every adjacent 4-bit solution into a 8-bit solution, then every adjacent 8-bit solution into a 16-bit solution, and finally every adjacent 16-bit solution into a 32-bit solution.
At the end, only the parity of the number of moves is returned stored in the second least significant bit.