Here's my own technique, along with code for deriving the resulting value. It requires three lerps of the output values (and three percentage calculations to determine the lerp percentages):
Note that this is not bilinear interpolation. It does not remap the quad of input points to the quad of output values, as some input points can result in output values outside the output quad.
Here I'm showing the non-aligned input values on a Cartesian plane (using the sample input values from the question above, multiplied by 10 for simplicity).

To calculate the 'north' point (top green dot), we calculate the percentage across the X axis as
(inputX - northwestX) / (northeastX - northwestX)
= (-4.2 - -19) / (10 - -19)
= 0.51034
We use this percentage to calculate the intercept at the Y axis by lerping between the top Y values:
(targetValue - startValue) * percent + startValue
= (northeastY - northwestY) * percent + northwestY
= (-8 - -7) * 0.51034 + -7
= -7.51034
We do the same on the 'south' edge:
(inputX - southwestX) / (southeastX - southwestX)
= (-4.2 - -11) / (9 - -11)
= 0.34
(southeastY - southwestY) * percent + southwestY
= (7 - 4) * 0.34 + 4
= 5.02
Finally, we use these two values to calculate the final percentage between the north and south edges:
(inputY - southY) / (northY - southY)
= (1 - 5.02) / (-7.51034 - 5.02)
= 0.3208
With these three percentages in hand we can calculate our final output values by lerping between the points:
nw = Vector(-150,-100)
ne = Vector( 150,-100)
sw = Vector(-150, 100)
se = Vector( 150, 100)
north = lerp( nw, ne, 0.51034) --> ( 3.10, -100.00)
south = lerp( sw, se, 0.34) --> (-48.00, 100.00)
result = lerp( south, north, 0.3208) --> (-31.61, 35.84)
Finally, here is some (Lua) code performing the above. It uses a mutable Vector object that supports the ability to copy values from another vector and lerp its values towards another vector.
-- Creates a bilinear interpolator
-- Corners should be an object with nw/ne/sw/se keys,
-- each of which holds a pair of mutable Vectors
-- { nw={inp=vector1, out=vector2}, … }
function tetragonalBilinearInterpolator(corners)
local sides = {
n={ pt=Vector(), pts={corners.nw, corners.ne} },
s={ pt=Vector(), pts={corners.sw, corners.se} }
}
for _,side in pairs(sides) do
side.minX = side.pts[1].inp.x
side.diff = side.pts[2].inp.x - side.minX
end
-- Mutates the input vector to hold the result
return function(inpVector)
for _,side in pairs(sides) do
local pctX = (inpVector.x - side.minX) / side.diff
side.pt:copyFrom(side.pts[1].inp):lerp(side.pts[2].inp,pctX)
side.inpY = side.pt.y
side.pt:copyFrom(side.pts[1].out):lerp(side.pts[2].out,pctX)
end
local pctY = (inpVector.y-sides.s.inpY)/(sides.n.y-sides.s.inpY)
return inpVector:copyFrom(sides.s.pt):lerp(sides.n.pt,pctY)
end
end
local interp = tetragonalBilinearInterpolator{
nw={ inp=Vector(-19,-7), out=Vector(-150,-100) },
ne={ inp=Vector( 10,-8), out=Vector( 150,-100) },
sw={ inp=Vector(-11, 4), out=Vector(-150, 100) },
se={ inp=Vector( 9, 7), out=Vector( 150, 100) }
}
print(interp(Vector(-4.2, 1))) --> <-31.60 35.84>