212

I am wondering if there is any difference with regards to performance between the following

SELECT ... FROM ... WHERE someFIELD IN(1,2,3,4)

SELECT ... FROM ... WHERE someFIELD between 0 AND 5

SELECT ... FROM ... WHERE someFIELD = 1 OR someFIELD = 2 OR someFIELD = 3 ... 

or will MySQL optimize the SQL in the same way compilers optimize code?


EDIT

Changed the AND's to OR's for the reason stated in the comments.

informatik01
  • 16,038
  • 10
  • 74
  • 104
Scott
  • 11,046
  • 10
  • 51
  • 83
  • Im also researching this thing, but in opposition for some statements that IN will be converted to row of OR`s I could say that it can also be converted to UNION`s which is recomended for replacing OR`s to optimize query. – Jānis Gruzis Apr 20 '12 at 20:21
  • 1
    There have been a few Optimization changes in this area, so some of the following answers may be "out of date". – Rick James Feb 12 '21 at 02:15
  • In particular. The number of items _may_ matter. How "clumped" the numbers are _may_ matter (`BETWEEN 1 AND 4` perfectly matches, and _may_ be faster). The version of MySQL/MariaDB _may_ matter. – Rick James Jul 18 '21 at 16:59

14 Answers14

278

I needed to know this for sure, so I benchmarked both methods. I consistenly found IN to be much faster than using OR.

Do not believe people who give their "opinion", science is all about testing and evidence.

I ran a loop of 1000x the equivalent queries (for consistency, I used sql_no_cache):

IN: 2.34969592094s

OR: 5.83781504631s

Update:
(I don't have the source code for the original test, as it was 6 years ago, though it returns a result in the same range as this test)

In request for some sample code to test this, here is the simplest possible use case. Using Eloquent for syntax simplicity, raw SQL equivalent executes the same.

$t = microtime(true); 
for($i=0; $i<10000; $i++):
$q = DB::table('users')->where('id',1)
    ->orWhere('id',2)
    ->orWhere('id',3)
    ->orWhere('id',4)
    ->orWhere('id',5)
    ->orWhere('id',6)
    ->orWhere('id',7)
    ->orWhere('id',8)
    ->orWhere('id',9)
    ->orWhere('id',10)
    ->orWhere('id',11)
    ->orWhere('id',12)
    ->orWhere('id',13)
    ->orWhere('id',14)
    ->orWhere('id',15)
    ->orWhere('id',16)
    ->orWhere('id',17)
    ->orWhere('id',18)
    ->orWhere('id',19)
    ->orWhere('id',20)->get();
endfor;
$t2 = microtime(true); 
echo $t."\n".$t2."\n".($t2-$t)."\n";

1482080514.3635
1482080517.3713
3.0078368186951

$t = microtime(true); 
for($i=0; $i<10000; $i++): 
$q = DB::table('users')->whereIn('id',[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])->get(); 
endfor; 
$t2 = microtime(true); 
echo $t."\n".$t2."\n".($t2-$t)."\n";

1482080534.0185
1482080536.178
2.1595389842987

cn007b
  • 16,596
  • 7
  • 59
  • 74
Cyril Graze
  • 3,881
  • 2
  • 21
  • 27
  • 22
    What indexes were used in these tests? – eggyal Jan 01 '13 at 13:26
  • 5
    I was also optimizing queries and found out that the `IN` statement was about 30% faster than an `OR`. – Timo002 May 13 '14 at 09:23
  • Wow, this is both awesome and lame. MySQL never ceases to amaze me with this kind of stuff. – gosukiwi Dec 31 '14 at 17:11
  • 10
    Performance reason (quoting MariaDB(a MySQL new free branch) docs): `Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are constants, they are evaluated according to the type of expr and sorted. The search for the item then is done using a binary search. This means ` **`IN is very quick if the IN value list consists entirely of constants`** `. Otherwise, type conversion takes place according to the rules described at Type Conversion, but applied to all the arguments.` => **if your column is integer, pass integers to `IN` too...** – jave.web Aug 14 '16 at 06:27
  • 15
    As a corollary to '_Do not believe people who give their "opinion"_': Providing performance figures without including the scripts, tables and indexes used to obtain those figures makes them unverifiable. As such, the figures are as good as an "opinion". – Disillusioned Dec 17 '16 at 10:48
  • 2
    @CraigYoung, you could just go ahead and setup your own experiment and test. The results provided are definitely verifiable, just replicate the simple experiment described by running the query in a loop. One query using IN, another using OR. It's so simple, you don't actually need me to write the code for you, do you? – Cyril Graze Dec 18 '16 at 15:32
  • 2
    @eggyal, this case the primary key. As mentioned by jave.web, IN will be faster for integer constants. I added a simple example to the answer showing the base loop for a benchmark. You could modify that test with more complex queries, and/or with non-constant indexes and see what results you get. For most straightforward cases, IN proves to be faster. – Cyril Graze Dec 18 '16 at 19:11
  • In newer versions of MySQL, `OR` is turned into `IN`. But this takes _compile time_ effort. The _runtime_ is then the same. – Rick James Jun 30 '17 at 22:10
  • NOTE: If you are doing anything expensive in the condition, such as using `SUBSTRING_INDEX( name, '.', -1 )`, then using `IN` becomes orders of magnitude faster than using `LIKE` because you only have to do the `SUBSTRING_INDEX` once and just compare it to the list of values, instead of running each time for every `LIKE` that you have. – Joshua Pinter Aug 21 '19 at 17:49
73

I also did a test for future Googlers. Total count of returned results is 7264 out of 10000

SELECT * FROM item WHERE id = 1 OR id = 2 ... id = 10000

This query took 0.1239 seconds

SELECT * FROM item WHERE id IN (1,2,3,...10000)

This query took 0.0433 seconds

IN is 3 times faster than OR

Ergec
  • 11,608
  • 7
  • 52
  • 62
  • 18
    What MySQL engine was it and did you clear MySQL buffers and OS file caches in between the two queries? – dabest1 Dec 07 '11 at 01:09
  • 3
    Your test is a narrow use-case. The query returns 72% of the data, and is unlikely to benefit from indexes. – Disillusioned Dec 17 '16 at 10:58
  • I bet most of that time was consuming the query, parsing it, and query planning it. That's certainly a consideration: if you're going to have 10k OR statements, you're going to have a lot of redundant text just expressing it with `OR`: best to use the most compact expression possible. – bishop Apr 03 '18 at 15:40
69

The accepted answer doesn't explain the reason.

Below are quoted from High Performance MySQL, 3rd Edition.

In many database servers, IN() is just a synonym for multiple OR clauses, because the two are logically equivalent. Not so in MySQL, which sorts the values in the IN() list and uses a fast binary search to see whether a value is in the list. This is O(Log n) in the size of the list, whereas an equivalent series of OR clauses is O(n) in the size of the list (i.e., much slower for large lists)

Jacob
  • 1,776
  • 14
  • 11
15

I think the BETWEEN will be faster since it should be converted into:

Field >= 0 AND Field <= 5

It is my understanding that an IN will be converted to a bunch of OR statements anyway. The value of IN is the ease of use. (Saving on having to type each column name multiple times and also makes it easier to use with existing logic - you don't have to worry about AND/OR precedence because the IN is one statement. With a bunch of OR statements, you have to ensure you surround them with parentheses to make sure they are evaluated as one condition.)

The only real answer to your question is PROFILE YOUR QUERIES. Then you will know what works best in your particular situation.

Kritzefitz
  • 2,644
  • 1
  • 20
  • 35
beach
  • 8,330
  • 3
  • 29
  • 25
  • Statistically, Between has a chance to trigger the range index. IN() doesn't have this privilege. But yes, beach is right: you NEED to profile your request to know whether an index is used and which one. It's really hard to predict what the MySQL optimiser will choose. – Savageman Mar 20 '10 at 01:16
  • "It is my understanding that an IN will be converted to a bunch of OR statements anyway." Where did you read this? I would expect it to put it in a hashmap to make O(1) lookups. – Ztyx Apr 02 '14 at 07:09
  • IN's being converted to OR's is how SQLServer handles it (or at least it did - might have changed now, haven't used it in years). I've been unable to find any evidence that MySQL does this. – RichardAtHome Aug 29 '14 at 09:56
  • 4
    This answer is correct, between is converted to "1 <= film_id <= 5". The other two solutions are not folded into a single range condition. I have a blog post which demonstrates this using OPTIMIZER TRACE here: http://www.tocker.ca/2015/05/25/optimizer-trace-and-explain-formatjson-in-5-7.html – Morgan Tocker May 25 '15 at 15:03
14

It depends on what you are doing; how wide is the range, what is the data type (I know your example uses a numeric data type but your question can also apply to a lot of different data types).

This is an instance where you want to write the query both ways; get it working and then use EXPLAIN to figure out the execution differences.

I'm sure there is a concrete answer to this but this is how I would, practically speaking, figure out the answer for my given question.

This might be of some help: http://forge.mysql.com/wiki/Top10SQLPerformanceTips

Regards,
Frank

Frank V
  • 25,141
  • 34
  • 106
  • 144
7

Just when you thought it was safe...

What is your value of eq_range_index_dive_limit? In particular, do you have more or fewer items in the IN clause?

This will not include a Benchmark, but will peer into the inner workings a little. Let's use a tool to see what is going on -- Optimizer Trace.

The query: SELECT * FROM canada WHERE id ...

With an OR of 3 values, part of the trace looks like:

       "condition_processing": {
          "condition": "WHERE",
          "original_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(multiple equal(296172, `canada`.`id`) or multiple equal(295093, `canada`.`id`) or multiple equal(293626, `canada`.`id`))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "296172 <= id <= 296172"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

Note how ICP is being given ORs. This implies that OR is not turned into IN, and InnoDB will be performing a bunch of = tests through ICP. (I do not feel it is worth considering MyISAM.)

(This is Percona's 5.6.22-71.0-log; id is a secondary index.)

Now for IN() with a few values

eq_range_index_dive_limit = 10; there are 8 values.

        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "295573 <= id <= 295573",
                      "295588 <= id <= 295588",
                      "295810 <= id <= 295810",
                      "296127 <= id <= 296127",
                      "296172 <= id <= 296172",
                      "297148 <= id <= 297148"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

Note that the IN does not seem to be turned into OR.

A side note: Notice that the constant values were sorted. This can be beneficial in two ways:

  • By jumping around less, there may be better caching, less I/O to get to all the values.
  • If two similar queries are coming from separate connections, and they are in transactions, there is a better chance of getting a delay instead of a deadlock due to overlapping lists.

Finally, IN() with a lots of values

      {
        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "291752 <= id <= 291752",
                      "291839 <= id <= 291839",
                      ...
                      "297196 <= id <= 297196",
                      "297201 <= id <= 297201"
                    ],
                    "index_dives_for_eq_ranges": false,
                    "rows": 111,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

Side note: I needed this due to the bulkiness of the trace:

@@global.optimizer_trace_max_mem_size = 32222;
Rick James
  • 135,179
  • 13
  • 127
  • 222
7

I think one explanation to sunseeker's observation is MySQL actually sort the values in the IN statement if they are all static values and using binary search, which is more efficient than the plain OR alternative. I can't remember where I've read that, but sunseeker's result seems to be a proof.

user658991
  • 566
  • 3
  • 7
3

Below are details of 6 queries using MySQL 5.6 @SQLFiddle

In summary the 6 queries cover independently indexed columns and 2 queries were used per data type. All queries resulted in use of an index regardless of IN() or ORs being used.

        |   ORs      |   IN()
integer | uses index | uses index
date    | uses index | uses index
varchar | uses index | uses index

I really just wanted to debunk statements made that OR means no index can be used. This isn't true. Indexes can be used in queries using OR as the 6 queries in the following examples display.

Also it seems to me that many have ignored the fact that IN() is a syntax shortcut for a set of ORs. At small scale perfomance differences between using IN() -v- OR are extremely (infintessinally) marginal.

While at larger scale IN() is certainly more convenient, but it sill equates to a set of OR conditions logically. Circumstance change for each query so testing your query on your tables is always best.

Summary of the 6 explain plans, all "Using index condition" (scroll right)

  Query               select_type    table    type    possible_keys      key      key_len   ref   rows   filtered           Extra          
                      ------------- --------- ------- --------------- ----------- --------- ----- ------ ---------- ----------------------- 
  Integers using OR   SIMPLE        mytable   range   aNum_idx        aNum_idx    4               10     100.00     Using index condition  
  Integers using IN   SIMPLE        mytable   range   aNum_idx        aNum_idx    4               10     100.00     Using index condition  
  Dates using OR      SIMPLE        mytable   range   aDate_idx       aDate_idx   6               7      100.00     Using index condition  
  Dates using IN      SIMPLE        mytable   range   aDate_idx       aDate_idx   6               7      100.00     Using index condition  
  Varchar using OR    SIMPLE        mytable   range   aName_idx       aName_idx   768             10     100.00     Using index condition  
  Varchar using IN    SIMPLE        mytable   range   aName_idx       aName_idx   768             10     100.00     Using index condition  

SQL Fiddle

MySQL 5.6 Schema Setup:

CREATE TABLE `myTable` (
  `id` mediumint(8) unsigned NOT NULL auto_increment,
  `aName` varchar(255) default NULL,
  `aDate` datetime,
  `aNum`  mediumint(8),
  PRIMARY KEY (`id`)
) AUTO_INCREMENT=1;

ALTER TABLE `myTable` ADD INDEX `aName_idx` (`aName`);
ALTER TABLE `myTable` ADD INDEX `aDate_idx` (`aDate`);
ALTER TABLE `myTable` ADD INDEX `aNum_idx` (`aNum`);

INSERT INTO `myTable` (`aName`,`aDate`)
 VALUES 
 ("Daniel","2017-09-19 01:22:31")
,("Quentin","2017-06-03 01:06:45")
,("Chester","2017-06-14 17:49:36")
,("Lev","2017-08-30 06:27:59")
,("Garrett","2018-10-04 02:40:37")
,("Lane","2017-01-22 17:11:21")
,("Chaim","2017-09-20 11:13:46")
,("Kieran","2018-03-10 18:37:26")
,("Cedric","2017-05-20 16:25:10")
,("Conan","2018-07-10 06:29:39")
,("Rudyard","2017-07-14 00:04:00")
,("Chadwick","2018-08-18 08:54:08")
,("Darius","2018-10-02 06:55:56")
,("Joseph","2017-06-19 13:20:33")
,("Wayne","2017-04-02 23:20:25")
,("Hall","2017-10-13 00:17:24")
,("Craig","2016-12-04 08:15:22")
,("Keane","2018-03-12 04:21:46")
,("Russell","2017-07-14 17:21:58")
,("Seth","2018-07-25 05:51:30")
,("Cole","2018-06-09 15:32:53")
,("Donovan","2017-08-12 05:21:35")
,("Damon","2017-06-27 03:44:19")
,("Brian","2017-02-01 23:35:20")
,("Harper","2017-08-25 04:29:27")
,("Chandler","2017-09-30 23:54:06")
,("Edward","2018-07-30 12:18:07")
,("Curran","2018-05-23 09:31:53")
,("Uriel","2017-05-08 03:31:43")
,("Honorato","2018-04-07 14:57:53")
,("Griffin","2017-01-07 23:35:31")
,("Hasad","2017-05-15 05:32:41")
,("Burke","2017-07-04 01:11:19")
,("Hyatt","2017-03-14 17:12:28")
,("Brenden","2017-10-17 05:16:14")
,("Ryan","2018-10-10 08:07:55")
,("Giacomo","2018-10-06 14:21:21")
,("James","2018-02-06 02:45:59")
,("Colt","2017-10-10 08:11:26")
,("Kermit","2017-09-18 16:57:16")
,("Drake","2018-05-20 22:08:36")
,("Berk","2017-04-16 17:39:32")
,("Alan","2018-09-01 05:33:05")
,("Deacon","2017-04-20 07:03:05")
,("Omar","2018-03-02 15:04:32")
,("Thaddeus","2017-09-19 04:07:54")
,("Troy","2016-12-13 04:24:08")
,("Rogan","2017-11-02 00:03:25")
,("Grant","2017-08-21 01:45:16")
,("Walker","2016-11-26 15:54:52")
,("Clarke","2017-07-20 02:26:56")
,("Clayton","2018-08-16 05:09:29")
,("Denton","2018-08-11 05:26:05")
,("Nicholas","2018-07-19 09:29:55")
,("Hashim","2018-08-10 20:38:06")
,("Todd","2016-10-25 01:01:36")
,("Xenos","2017-05-11 22:50:35")
,("Bert","2017-06-17 18:08:21")
,("Oleg","2018-01-03 13:10:32")
,("Hall","2018-06-04 01:53:45")
,("Evan","2017-01-16 01:04:25")
,("Mohammad","2016-11-18 05:42:52")
,("Armand","2016-12-18 06:57:57")
,("Kaseem","2018-06-12 23:09:57")
,("Colin","2017-06-29 05:25:52")
,("Arthur","2016-12-29 04:38:13")
,("Xander","2016-11-14 19:35:32")
,("Dante","2016-12-01 09:01:04")
,("Zahir","2018-02-17 14:44:53")
,("Raymond","2017-03-09 05:33:06")
,("Giacomo","2017-04-17 06:12:52")
,("Fulton","2017-06-04 00:41:57")
,("Chase","2018-01-14 03:03:57")
,("William","2017-05-08 09:44:59")
,("Fuller","2017-03-31 20:35:20")
,("Jarrod","2017-02-15 02:45:29")
,("Nissim","2018-03-11 14:19:25")
,("Chester","2017-11-05 00:14:27")
,("Perry","2017-12-24 11:58:04")
,("Theodore","2017-06-26 12:34:12")
,("Mason","2017-10-02 03:53:49")
,("Brenden","2018-10-08 10:09:47")
,("Jerome","2017-11-05 20:34:25")
,("Keaton","2018-08-18 00:55:56")
,("Tiger","2017-05-21 16:59:07")
,("Benjamin","2018-04-10 14:46:36")
,("John","2018-09-05 18:53:03")
,("Jakeem","2018-10-11 00:17:38")
,("Kenyon","2017-12-18 22:19:29")
,("Ferris","2017-03-29 06:59:13")
,("Hoyt","2017-01-03 03:48:56")
,("Fitzgerald","2017-07-27 11:27:52")
,("Forrest","2017-10-05 23:14:21")
,("Jordan","2017-01-11 03:48:09")
,("Lev","2017-05-25 08:03:39")
,("Chase","2017-06-18 19:09:23")
,("Ryder","2016-12-13 12:50:50")
,("Malik","2017-11-19 15:15:55")
,("Zeph","2018-04-04 11:22:12")
,("Amala","2017-01-29 07:52:17")
;

.

update MyTable
set aNum = id
;

Query 1:

select 'aNum by OR' q, mytable.*
from mytable
where aNum = 12
OR aNum = 22
OR aNum = 27
OR aNum = 32
OR aNum = 42
OR aNum = 52
OR aNum = 62
OR aNum = 65
OR aNum = 72
OR aNum = 82

Results:

|          q | id |    aName |                aDate | aNum |
|------------|----|----------|----------------------|------|
| aNum by OR | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| aNum by OR | 22 |  Donovan | 2017-08-12T05:21:35Z |   22 |
| aNum by OR | 27 |   Edward | 2018-07-30T12:18:07Z |   27 |
| aNum by OR | 32 |    Hasad | 2017-05-15T05:32:41Z |   32 |
| aNum by OR | 42 |     Berk | 2017-04-16T17:39:32Z |   42 |
| aNum by OR | 52 |  Clayton | 2018-08-16T05:09:29Z |   52 |
| aNum by OR | 62 | Mohammad | 2016-11-18T05:42:52Z |   62 |
| aNum by OR | 65 |    Colin | 2017-06-29T05:25:52Z |   65 |
| aNum by OR | 72 |   Fulton | 2017-06-04T00:41:57Z |   72 |
| aNum by OR | 82 |  Brenden | 2018-10-08T10:09:47Z |   82 |

Query 2:

select 'aNum by IN' q, mytable.*
from mytable
where aNum IN (
            12
          , 22
          , 27
          , 32
          , 42
          , 52
          , 62
          , 65
          , 72
          , 82
          )

Results:

|          q | id |    aName |                aDate | aNum |
|------------|----|----------|----------------------|------|
| aNum by IN | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| aNum by IN | 22 |  Donovan | 2017-08-12T05:21:35Z |   22 |
| aNum by IN | 27 |   Edward | 2018-07-30T12:18:07Z |   27 |
| aNum by IN | 32 |    Hasad | 2017-05-15T05:32:41Z |   32 |
| aNum by IN | 42 |     Berk | 2017-04-16T17:39:32Z |   42 |
| aNum by IN | 52 |  Clayton | 2018-08-16T05:09:29Z |   52 |
| aNum by IN | 62 | Mohammad | 2016-11-18T05:42:52Z |   62 |
| aNum by IN | 65 |    Colin | 2017-06-29T05:25:52Z |   65 |
| aNum by IN | 72 |   Fulton | 2017-06-04T00:41:57Z |   72 |
| aNum by IN | 82 |  Brenden | 2018-10-08T10:09:47Z |   82 |

Query 3:

select 'adate by OR' q, mytable.*
from mytable
where aDate= str_to_date("2017-02-15 02:45:29",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-03-10 18:37:26",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-05-20 16:25:10",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-07-10 06:29:39",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-07-14 00:04:00",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-08-18 08:54:08",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-10-02 06:55:56",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-04-20 07:03:05",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-03-02 15:04:32",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-09-19 04:07:54",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2016-12-13 04:24:08",'%Y-%m-%d %h:%i:%s')

Results:

|           q | id |    aName |                aDate | aNum |
|-------------|----|----------|----------------------|------|
| adate by OR | 47 |     Troy | 2016-12-13T04:24:08Z |   47 |
| adate by OR | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |
| adate by OR | 44 |   Deacon | 2017-04-20T07:03:05Z |   44 |
| adate by OR | 46 | Thaddeus | 2017-09-19T04:07:54Z |   46 |
| adate by OR | 10 |    Conan | 2018-07-10T06:29:39Z |   10 |
| adate by OR | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| adate by OR | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |

Query 4:

select 'adate by IN' q, mytable.*
from mytable
where aDate IN (
          str_to_date("2017-02-15 02:45:29",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-03-10 18:37:26",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-05-20 16:25:10",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-07-10 06:29:39",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-07-14 00:04:00",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-08-18 08:54:08",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-10-02 06:55:56",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-04-20 07:03:05",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-03-02 15:04:32",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-09-19 04:07:54",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2016-12-13 04:24:08",'%Y-%m-%d %h:%i:%s')
        )

Results:

|           q | id |    aName |                aDate | aNum |
|-------------|----|----------|----------------------|------|
| adate by IN | 47 |     Troy | 2016-12-13T04:24:08Z |   47 |
| adate by IN | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |
| adate by IN | 44 |   Deacon | 2017-04-20T07:03:05Z |   44 |
| adate by IN | 46 | Thaddeus | 2017-09-19T04:07:54Z |   46 |
| adate by IN | 10 |    Conan | 2018-07-10T06:29:39Z |   10 |
| adate by IN | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| adate by IN | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |

Query 5:

select 'name by  OR' q, mytable.*
from mytable
where aname = 'Alan'
OR aname = 'Brian'
OR aname = 'Chandler'
OR aname = 'Darius'
OR aname = 'Evan'
OR aname = 'Ferris'
OR aname = 'Giacomo'
OR aname = 'Hall'
OR aname = 'James'
OR aname = 'Jarrod'

Results:

|           q | id |    aName |                aDate | aNum |
|-------------|----|----------|----------------------|------|
| name by  OR | 43 |     Alan | 2018-09-01T05:33:05Z |   43 |
| name by  OR | 24 |    Brian | 2017-02-01T23:35:20Z |   24 |
| name by  OR | 26 | Chandler | 2017-09-30T23:54:06Z |   26 |
| name by  OR | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |
| name by  OR | 61 |     Evan | 2017-01-16T01:04:25Z |   61 |
| name by  OR | 90 |   Ferris | 2017-03-29T06:59:13Z |   90 |
| name by  OR | 37 |  Giacomo | 2018-10-06T14:21:21Z |   37 |
| name by  OR | 71 |  Giacomo | 2017-04-17T06:12:52Z |   71 |
| name by  OR | 16 |     Hall | 2017-10-13T00:17:24Z |   16 |
| name by  OR | 60 |     Hall | 2018-06-04T01:53:45Z |   60 |
| name by  OR | 38 |    James | 2018-02-06T02:45:59Z |   38 |
| name by  OR | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |

Query 6:

select 'name by IN' q, mytable.*
from mytable
where aname IN (
      'Alan'
     ,'Brian'
     ,'Chandler'
     , 'Darius'
     , 'Evan'
     , 'Ferris'
     , 'Giacomo'
     , 'Hall'
     , 'James'
     , 'Jarrod'
     )

Results:

|          q | id |    aName |                aDate | aNum |
|------------|----|----------|----------------------|------|
| name by IN | 43 |     Alan | 2018-09-01T05:33:05Z |   43 |
| name by IN | 24 |    Brian | 2017-02-01T23:35:20Z |   24 |
| name by IN | 26 | Chandler | 2017-09-30T23:54:06Z |   26 |
| name by IN | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |
| name by IN | 61 |     Evan | 2017-01-16T01:04:25Z |   61 |
| name by IN | 90 |   Ferris | 2017-03-29T06:59:13Z |   90 |
| name by IN | 37 |  Giacomo | 2018-10-06T14:21:21Z |   37 |
| name by IN | 71 |  Giacomo | 2017-04-17T06:12:52Z |   71 |
| name by IN | 16 |     Hall | 2017-10-13T00:17:24Z |   16 |
| name by IN | 60 |     Hall | 2018-06-04T01:53:45Z |   60 |
| name by IN | 38 |    James | 2018-02-06T02:45:59Z |   38 |
| name by IN | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |
Paul Maxwell
  • 33,002
  • 3
  • 32
  • 51
3

2018: IN (...) is faster. But >= && <= is even faster than IN.

Here's my benchmark.

evilReiko
  • 19,501
  • 24
  • 86
  • 102
3

OR will be slowest. Whether IN or BETWEEN is faster will depend on your data, but I'd expect BETWEEN to be faster normally as it can simple take a range from an index (assuming someField is indexed).

Greg
  • 316,276
  • 54
  • 369
  • 333
2

I'll bet they are the same, you can run a test by doing the following:

loop over the "in (1,2,3,4)" 500 times and see how long it takes. loop over the "=1 or =2 or=3..." version 500 times and seeing how long it runs.

you could also try a join way, if someField is an index and your table is big it could be faster...

SELECT ... 
    FROM ... 
        INNER JOIN (SELECT 1 as newField UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT 4) dt ON someFIELD =newField

I tried the join method above on my SQL Server and it is nearly the same as the in (1,2,3,4), and they both result in a clustered index seek. I'm not sure how MySQL will handle them.

KM.
  • 101,727
  • 34
  • 178
  • 212
1

As explained by others, IN is better chosen than OR with respect to query performance.

Queries with OR condition might take more longer execution time in the below cases.

  1. to execute if MySQL optimizer choses any other index to be efficient(during false positive cases).
  2. If the number of records is more ( As clearly stated by Jacob )
Adithya
  • 19
  • 1
0

From what I understand about the way that the compiler optimizes these types of queries, using the IN clause is more efficient than multiple OR clauses. If you have values where the BETWEEN clause can be used, that is more efficient still.

Brandon Wood
  • 5,347
  • 4
  • 38
  • 31
0

I know that, as long as you have an index on Field, the BETWEEN will use it to quickly find one end, then traverse to the other. This is most efficient.

Every EXPLAIN I've seen shows "IN ( ... )" and " ... OR ..." to be interchangeable and equally (in)efficient. Which you would expect, since the optimizer has no way to know whether or not they comprise an interval. It's also equivalent to a UNION ALL SELECT on the individual values.

dkretz
  • 37,399
  • 13
  • 80
  • 138