To build on the solutions from Ffisegydd and amaliammr, here's an example where we make CSV representation for a custom colormap:
#! /usr/bin/env python3
import matplotlib
import numpy as np
vmin = 0.1
vmax = 1000
norm = matplotlib.colors.Normalize(np.log10(vmin), np.log10(vmax))
lognum = norm(np.log10([.5, 2., 10, 40, 150,1000]))
cdict = {
'red':
(
(0., 0, 0),
(lognum[0], 0, 0),
(lognum[1], 0, 0),
(lognum[2], 1, 1),
(lognum[3], 0.8, 0.8),
(lognum[4], .7, .7),
(lognum[5], .7, .7)
),
'green':
(
(0., .6, .6),
(lognum[0], 0.8, 0.8),
(lognum[1], 1, 1),
(lognum[2], 1, 1),
(lognum[3], 0, 0),
(lognum[4], 0, 0),
(lognum[5], 0, 0)
),
'blue':
(
(0., 0, 0),
(lognum[0], 0, 0),
(lognum[1], 0, 0),
(lognum[2], 0, 0),
(lognum[3], 0, 0),
(lognum[4], 0, 0),
(lognum[5], 1, 1)
)
}
mycmap = matplotlib.colors.LinearSegmentedColormap('my_colormap', cdict, 256)
norm = matplotlib.colors.LogNorm(vmin, vmax)
colors = {}
count = 0
step_size = 0.001
for value in np.arange(vmin, vmax+step_size, step_size):
count += 1
print("%d/%d %f%%" % (count, vmax*(1./step_size), 100.*count/(vmax*(1./step_size))))
rgba = mycmap(norm(value), bytes=True)
color = (rgba[0], rgba[1], rgba[2])
if color not in colors.values():
colors[value] = color
print ("value, red, green, blue")
for value in sorted(colors.keys()):
rgb = colors[value]
print("%s, %s, %s, %s" % (value, rgb[0], rgb[1], rgb[2]))