I am trying to apply a kernel function on a __device__
variable, which, according to the specs, resides "in global memory"
#include <stdio.h>
#include "sys_data.h"
#include "my_helper.cuh"
#include "helper_cuda.h"
#include <cuda_runtime.h>
double X[10] = {1,-2,3,-4,5,-6,7,-8,9,-10};
double Y[10] = {0};
__device__ double DEV_X[10];
int main(void) {
checkCudaErrors(cudaMemcpyToSymbol(DEV_X, X,10*sizeof(double)));
vector_projection<double><<<1,10>>>(DEV_X, 10);
getLastCudaError("oops");
checkCudaErrors(cudaMemcpyFromSymbol(Y, DEV_X, 10*sizeof(double)));
return 0;
}
The kernel function vector_projection
is defined in my_helper.cuh
as follows:
template<typename T> __global__ void vector_projection(T *dx, int n) {
int tid;
tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < n) {
if (dx[tid] < 0)
dx[tid] = (T) 0;
}
}
As you can see, I use cudaMemcpyToSymbol
and cudaMemcpyFromSymbol
to transfer data to and from the device. However, I'm getting the following error:
CUDA error at ../src/vectorAdd.cu:19 code=4(cudaErrorLaunchFailure)
"cudaMemcpyFromSymbol(Y, DEV_X, 10*sizeof(double))"
Footnote: I can of course avoid to use __device__
variables and go for something like this which works fine; I just want to see how to do the same thing (if possible) with __device__
variables.
Update: The output of cuda-memcheck
can be found at http://pastebin.com/AW9vmjFs. The error messages I get are as follows:
========= Invalid __global__ read of size 8
========= at 0x000000c8 in /home/ubuntu/Test0001/Debug/../src/my_helper.cuh:75:void vector_projection<double>(double*, int)
========= by thread (9,0,0) in block (0,0,0)
========= Address 0x000370e8 is out of bounds