I'm struggling to keep the same color bar range through different plots.
For example, I have these visualizations:
Which are produced with this code:
def plot_contour(x_dim, y_dim, x_steps, y_steps, scalar_field, file_path):
plt.figure()
x, y = numpy.mgrid[-x_dim:x_dim/:x_steps*1j, -y_dim:y_dim:y_steps*1j]
cs = plt.contourf(x, y, scalar_field, zorder=1, extent=[-x_dim, x_dim, -y_dim, y_dim])
plt.colorbar(cs)
plt.savefig(file_path + '.png', dpi=Vc.dpi)
plt.close()
I want to be able to compare both fields, so, I would like to use the same color mapping for both of them.
My first approach was to use the parameters v_min
and v_max
, using the min/max values of the data.
cs = plt.contourf(x, y, scalar_field, zorder=1, extent=[-x_dim, x_dim, -y_dim, y_dim], vmin=-1.00, vmax=1.05) # Manual setting to test
Then I got the same color mapping:
But I also would like to have the same color bar range displayed in the plot. I tried to use
cb = plt.colorbar(cs)
cb.set_clim(vmin=-1.00, vmax=1.05)
With no success.
This complete example produces the same behavior:
import matplotlib
import numpy as numpy
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
matplotlib.rcParams['xtick.direction'] = 'out'
matplotlib.rcParams['ytick.direction'] = 'out'
delta = 0.025
x = numpy.arange(-3.0, 3.0, delta)
y = numpy.arange(-2.0, 2.0, delta)
X, Y = numpy.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
# difference of Gaussians
Za = 10.0 * (Z2 - Z1)
Zb = 5.0 * (Z2 - Z1)
def bounds(scalar_fields):
"""
Get the bounds of a set of scalar_fields
:param scalar_fields : the scalar field set
:return: a set of normalized vector field components
"""
max_bound = -numpy.inf
min_bound = numpy.inf
for scalar_field in scalar_fields:
max_lim = numpy.max(scalar_field)
min_lim = numpy.min(scalar_field)
if max_lim > max_bound:
max_bound = max_lim
if min_lim < min_bound:
min_bound = min_lim
return min_bound, max_bound
def plot_contour(x_dim, y_dim, x_steps, y_steps, scalar_field, v_min, v_max, file_path):
plt.figure()
x, y = numpy.mgrid[-x_dim/2:x_dim/2:x_steps*1j, -y_dim/2:y_dim/2:y_steps*1j]
cs = plt.contourf(x, y, scalar_field, zorder=1, extent=[-x_dim/2.0, x_dim/2.0, -y_dim/2.0, y_dim/2.0],
vmin=v_min, vmax=v_max)
cb = plt.colorbar(cs)
plt.savefig(file_path + '.png')
plt.close()
v_min, v_max = bounds([Za, Zb])
x_dim = y_dim = 6
y_steps = x.shape[0]
x_steps = y.shape[0]
plot_contour(x_dim, y_dim, x_steps, y_steps, Za, v_min, v_max, 'Za')
plot_contour(x_dim, y_dim, x_steps, y_steps, Zb, v_min, v_max, 'Zb')
How could I do that?
Thank you in advance.