Assuming A
to be the input 4914x4914
matrix, this could be an efficient (in terms of runtime) approach -
sublen = 26; %// subset length
squeeze(sum(reshape(sum(reshape(A,sublen,[])),size(A,1)/sublen,sublen,[]),2))
For a generic block size, let's have a function -
function out = sum_blocks(A,block_nrows, block_ncols)
out = squeeze(sum(reshape(sum(reshape(A,block_nrows,[])),...
size(A,1)/block_nrows,block_ncols,[]),2));
return
Sample run -
>> A = randi(9,4,6);
>> A
A =
8 2 4 9 4 5
3 3 8 3 6 8
9 6 6 7 1 9
4 5 5 7 1 2
>> sum_blocks(A,2,3)
ans =
28 35
35 27
>> sum(sum(A(1:2,1:3)))
ans =
28
>> sum(sum(A(1:2,4:6)))
ans =
35
>> sum(sum(A(3:4,1:3)))
ans =
35
>> sum(sum(A(3:4,4:6)))
ans =
27
If you would like to avoid squeeze
-
sum(permute(reshape(sum(reshape(A,sublen,[])),size(A,1)/sublen,sublen,[]),[1 3 2]),3)
Benchmarking
Hoping you would care about performance, here are the benchmark results for all the solutions posted here. The benchmarking code that I have used -
num_runs = 100; %// Number of iterations to run benchmarks
A = rand(4914);
for k = 1:50000
tic(); elapsed = toc(); %// Warm up tic/toc
end
disp('---------------------- With squeeze + reshape + sum')
tic
for iter = 1:num_runs
sublen = 26; %// subset length
out1 = squeeze(sum(reshape(sum(reshape(A,sublen,[])),...
size(A,1)/sublen,sublen,[]),2));
end
time1 = toc;
disp(['Avg. elapsed time = ' num2str(time1/num_runs) ' sec(s)']), clear out1 sublen
disp('---------------------- With kron + matrix multiplication')
tic
for iter = 1:num_runs
n = 189; k = 26;
B = kron(speye(k), ones(1,n));
result = B*A*B';
end
time2 = toc;
disp(['Avg. elapsed time = ' num2str(time2/num_runs) ' sec(s)']),clear result n k B
disp('---------------------- With accumarray')
tic
for iter = 1:num_runs
s = 26; n = size(A,1)/s;
subs = kron(reshape(1:(n^2), n, n),ones(s));
out2 = reshape(accumarray(subs(:), A(:)), n, n);
end
time2 = toc;
disp(['Avg. elapsed time = ' num2str(time2/num_runs) ' sec(s)']),clear s n subs out2
The benchmarks results I got on my system -
---------------------- With squeeze + reshape + sum
Avg. elapsed time = 0.050729 sec(s)
---------------------- With kron + matrix multiplication
Avg. elapsed time = 0.068293 sec(s)
---------------------- With accumarray
Avg. elapsed time = 0.64745 sec(s)