466

I have one field in a pandas DataFrame that was imported as string format.

It should be a datetime variable. How do I convert it to a datetime column, and then filter based on date?

Example:

raw_data = pd.DataFrame({'Mycol': ['05SEP2014:00:00:00.000']})
wjandrea
  • 28,235
  • 9
  • 60
  • 81
Chris
  • 12,900
  • 12
  • 43
  • 65

7 Answers7

794

Use the to_datetime function, specifying a format to match your data.

df['Mycol'] = pd.to_datetime(df['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
wjandrea
  • 28,235
  • 9
  • 60
  • 81
chrisb
  • 49,833
  • 8
  • 70
  • 70
  • 168
    Note: the `format` argument isn't required. `to_datetime` is smart. Go ahead and try it without trying to match your data. – samthebrand Apr 22 '17 at 18:54
  • 3
    `format` is not required but passing it makes the conversion run much, much faster. See [this answer](https://stackoverflow.com/a/75277434/19123103) for more info. – cottontail Jan 29 '23 at 18:45
  • More correctly, in the case of the OP, `format` is required, otherwise `DateParseError` occurs. `pandas` can infer some string formats, but, as point out, using `format` greatly improves performance. – Trenton McKinney May 26 '23 at 15:04
104

If you have more than one column to be converted you can do the following:

df[["col1", "col2", "col3"]] = df[["col1", "col2", "col3"]].apply(pd.to_datetime)
Vlad Bezden
  • 83,883
  • 25
  • 248
  • 179
  • If you have different datetime formats in these columns, you can try using `format` parameter like: `apply(pd.to_datetime, format='mixed')` – Rafs Jul 12 '23 at 16:47
70

edit: recommending to use pd.to_datetime() instead of this because .apply() is generally slower.

You can use the DataFrame method .apply() to operate on the values in Mycol:

>>> df = pd.DataFrame(['05SEP2014:00:00:00.000'], columns=['Mycol'])
>>> df
                    Mycol
0  05SEP2014:00:00:00.000
>>> import datetime as dt
>>> df['Mycol'] = df['Mycol'].apply(lambda x: 
...     dt.datetime.strptime(x, '%d%b%Y:%H:%M:%S.%f'))
>>> df
       Mycol
0 2014-09-05
mechanical_meat
  • 163,903
  • 24
  • 228
  • 223
44

Use the pandas to_datetime function to parse the column as DateTime. Also, by using infer_datetime_format=True, it will automatically detect the format and convert the mentioned column to DateTime.

import pandas as pd
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], infer_datetime_format=True)
wjandrea
  • 28,235
  • 9
  • 60
  • 81
Prateek Sharma
  • 1,371
  • 13
  • 11
16

Time Saver:

raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'])
wjandrea
  • 28,235
  • 9
  • 60
  • 81
Gil Baggio
  • 13,019
  • 3
  • 48
  • 37
6
To silence SettingWithCopyWarning

If you got this warning, then that means your dataframe was probably created by filtering another dataframe. Make a copy of your dataframe before any assignment and you're good to go.

df = df.copy()
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f')
errors='coerce' is useful

If some rows are not in the correct format or not datetime at all, errors= parameter is very useful, so that you can convert the valid rows and handle the rows that contained invalid values later.

df['date'] = pd.to_datetime(
    df['date'], format='%d%b%Y:%H:%M:%S.%f', errors='coerce')

# for multiple columns
df[['start', 'end']] = df[['start', 'end']].apply(
    pd.to_datetime, format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
Setting the correct format= is much faster than letting pandas find out1

Long story short, passing the correct format= from the beginning as in chrisb's post is much faster than letting pandas figure out the format, especially if the format contains time component. The runtime difference for dataframes greater than 10k rows is huge (~25 times faster, so we're talking like a couple minutes vs a few seconds). All valid format options can be found at https://strftime.org/.

perfplot


1 Code used to produce the timeit test plot.

import perfplot
from random import choices
from datetime import datetime

mdYHMSf = range(1,13), range(1,29), range(2000,2024), range(24), *[range(60)]*2, range(1000)
perfplot.show(
    kernels=[lambda x: pd.to_datetime(x), 
             lambda x: pd.to_datetime(x, format='%m/%d/%Y %H:%M:%S.%f'), 
             lambda x: pd.to_datetime(x, infer_datetime_format=True),
             lambda s: s.apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))],
    labels=["pd.to_datetime(df['date'])", 
            "pd.to_datetime(df['date'], format='%m/%d/%Y %H:%M:%S.%f')", 
            "pd.to_datetime(df['date'], infer_datetime_format=True)", 
            "df['date'].apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))"],
    n_range=[2**k for k in range(20)],
    setup=lambda n: pd.Series([f"{m}/{d}/{Y} {H}:{M}:{S}.{f}" 
                               for m,d,Y,H,M,S,f in zip(*[choices(e, k=n) for e in mdYHMSf])]),
    equality_check=pd.Series.equals,
    xlabel='len(df)'
)

If the column contains multiple formats, see Convert a column of mixed format strings to a datetime Dtype.

wjandrea
  • 28,235
  • 9
  • 60
  • 81
cottontail
  • 10,268
  • 18
  • 50
  • 51
-2

Just like we convert object data type to float or int, use astype().

raw_data['Mycol'] = raw_data['Mycol'].astype('datetime64[ns]')
wjandrea
  • 28,235
  • 9
  • 60
  • 81
Amar nayak
  • 147
  • 1
  • 7