You have gotten answers. Prolog is a language which often offers multiple "correct" ways to approach a problem. It is not clear from your answer if you insist on any sort of order in your answers. So, ignoring order, one way to do it would be:
- Sort the list using a stable sort (one that does not drop duplicates)
- Apply a run-length encoding on the sorted list
The main virtue of this approach is that it deconstructs your problem to two well-defined (and solved) sub-problems.
The first is easy: msort(List, Sorted)
The second one is a bit more involved, but still straight forward if you want the predicate to only work one way, that is, List --> Encoding. One possibility (quite explicit):
list_to_rle([], []).
list_to_rle([X|Xs], RLE) :-
list_to_rle_1(Xs, [[X, 1]], RLE).
list_to_rle_1([], RLE, RLE).
list_to_rle_1([X|Xs], [[Y, N]|Rest], RLE) :-
( dif(X, Y)
-> list_to_rle_1(Xs, [[X, 1],[Y, N]|Rest], RLE)
; succ(N, N1),
list_to_rle_1(Xs, [[X, N1]|Rest], RLE)
).
So now, from the top level:
?- msort([a,b,c,a,b,c,d], Sorted), list_to_rle(Sorted, RLE).
Sorted = [a, a, b, b, c, c, d],
RLE = [[d, 1], [c, 2], [b, 2], [a, 2]].
On a side note, it is almost always better to prefer "pairs", as in X-N
, instead of lists with two elements exactly, as in [X, N]
. Furthermore, you should keep the original order of the elements in the list, if you want to be correct. From this answer:
rle([], []).
rle([First|Rest],Encoded):-
rle_1(Rest, First, 1, Encoded).
rle_1([], Last, N, [Last-N]).
rle_1([H|T], Prev, N, Encoded) :-
( dif(H, Prev)
-> Encoded = [Prev-N|Rest],
rle_1(T, H, 1, Rest)
; succ(N, N1),
rle_1(T, H, N1, Encoded)
).
Why is it better?
we got rid of 4 pairs of unnecessary brackets in the code
we got rid of clutter in the reported solution
we got rid of a whole lot of unnecessary nested terms: compare .(a, .(1, []))
to -(a, 1)
we made the intention of the program clearer to the reader (this is the conventional way to represent pairs in Prolog)
From the top level:
?- msort([a,b,c,a,b,c,d], Sorted), rle(Sorted, RLE).
Sorted = [a, a, b, b, c, c, d],
RLE = [a-2, b-2, c-2, d-1].
The presented run-length encoder is very explicit in its definition, which has of course its pros and cons. See this answer for a much more succinct way of doing it.