How to alter column data type in Amazon Redshift database?
I am not able to alter the column data type in Redshift; is there any way to modify the data type in Amazon Redshift?
How to alter column data type in Amazon Redshift database?
I am not able to alter the column data type in Redshift; is there any way to modify the data type in Amazon Redshift?
As noted in the ALTER TABLE documentation, you can change length of VARCHAR
columns using
ALTER TABLE table_name
{
ALTER COLUMN column_name TYPE new_data_type
}
For other column types all I can think of is to add a new column with a correct datatype, then insert all data from old column to a new one, and finally drop the old column.
Use code similar to that:
ALTER TABLE t1 ADD COLUMN new_column ___correct_column_type___;
UPDATE t1 SET new_column = column;
ALTER TABLE t1 DROP COLUMN column;
ALTER TABLE t1 RENAME COLUMN new_column TO column;
There will be a schema change - the newly added column will be last in a table (that may be a problem with COPY
statement, keep that in mind - you can define a column order with COPY
)
to avoid the schema change mentioned by Tomasz:
BEGIN TRANSACTION;
ALTER TABLE <TABLE_NAME> RENAME TO <TABLE_NAME>_OLD;
CREATE TABLE <TABLE_NAME> ( <NEW_COLUMN_DEFINITION> );
INSERT INTO <TABLE_NAME> (<NEW_COLUMN_DEFINITION>)
SELECT <COLUMNS>
FROM <TABLE_NAME>_OLD;
DROP TABLE <TABLE_NAME>_OLD;
END TRANSACTION;
(Recent update) It's possible to alter the type for varchar columns in Redshift.
ALTER COLUMN column_name TYPE new_data_type
Example:
CREATE TABLE t1 (c1 varchar(100))
ALTER TABLE t1 ALTER COLUMN c1 TYPE varchar(200)
Here is the documentation link
If you don't want to change the column order, an option will be creating a temp table, drop & create the new one with desired size and then bulk again the data.
CREATE TEMP TABLE temp_table AS SELECT * FROM original_table;
DROP TABLE original_table;
CREATE TABLE original_table ...
INSERT INTO original_table SELECT * FROM temp_table;
The only problem recreating the table is that you will need to grant again permissions and if the table is too bigger it will take a piece of time.
ALTER TABLE publisher_catalogs ADD COLUMN new_version integer;
update publisher_catalogs set new_version = CAST(version AS integer);
ALTER TABLE publisher_catalogs DROP COLUMN version RESTRICT;
ALTER TABLE publisher_catalogs RENAME new_version to version;
Redshift being columnar database doesn't allow you to modify the datatype directly, however below is one approach this will change the column order.
Steps -
1.Alter table add newcolumn to the table 2.Update the newcolumn value with oldcolumn value 3.Alter table to drop the oldcolumn 4.alter table to rename the columnn to oldcolumn
If you don't want to alter the order of the columns then solution would be to
1.create temp table with new column name
copy data from old table to new table.
drop old table
rename the newtable to oldtable
One important thing create a new table using like command instead simple create.
This method works for converting an (big) int column into a varchar
-- Create a backup of the original table
create table original_table_backup as select * from original_table;
-- Drop the original table, and then recreate with new desired data types
drop table original_table;
create table original_table (
col1 bigint,
col2 varchar(20) -- changed from bigint
);
-- insert original entries back into the new table
insert into original_table select * from original_table_backup;
-- cleanup
drop original_table_backup;
You can use the statements below:
ALTER TABLE <table name --etl_proj_atm.dim_card_type >
ALTER COLUMN <col name --card_type> type varchar(30)
You can alter data length for varchar datatype using the below ALTER TABLE syntax provided in the documentation here. The ALTER TABLE statement can change the length of a varchar datatype.
ALTER TABLE table_name
ALTER COLUMN column_name TYPE updated_varchar_data_type_size
If your usecase is to change the datatype from one type to another, Eg: integer to varchar, varchar to date etc, you can use one of the below two methods
BEGIN;
ALTER TABLE test ADD COLUMN col1_new int;
UPDATE test SET col1_new = col1 :: int;
ALTER TABLE test DROP COLUMN col1;
ALTER TABLE test RENAME COLUMN col1_new TO col1;
END;
SELECT DDL from v_generate_user_grant_revoke_ddl
WHERE objname = '<<table_name>>'
AND schemaname = '<<schema_name>>'
AND ddltype = 'grant'
AND by grantseq;
Insert these grant statements in the script below.
BEGIN;
ALTER TABLE test RENAME TO test_OLD;
CREATE TABLE test (col1 int, col2 varchar(10));
INSERT INTO test(select col1 :: int, col2 from test_OLD);
DROP TABLE test_OLD;
<<Insert grant statements here>>
END;
UNLOAD and COPY with table rename strategy should be the most efficient way to do this operation if retaining the table structure(row order) is important.
Here is an example adding to this answer.
BEGIN TRANSACTION;
ALTER TABLE <TABLE_NAME> RENAME TO <TABLE_NAME>_OLD;
CREATE TABLE <TABLE_NAME> ( <NEW_COLUMN_DEFINITION> );
UNLOAD ('select * from <TABLE_NAME>_OLD') TO 's3://bucket/key/unload_' manifest;
COPY <TABLE_NAME> FROM 's3://bucket/key/unload_manifest'manifest;
END TRANSACTION;
for updating the same column in redshift this would work fine
UPDATE table_name
SET column_name = 'new_value' WHERE column_name = 'old_value'
you can have multiple clause in where by using and, so as to remove any confusion for sql
cheers!!