When you try to call MyClass.foo()
, Python will complain since you did not pass the one required self
argument. @coderpatros's answer has the right idea, where we provide a default value for self
, so its no longer required. However, that won't work if there are additional arguments besides self
. Here's a function that can handle almost all types of method signatures:
import inspect
from functools import wraps
def class_overload(cls, methods):
""" Add classmethod overloads to one or more instance methods """
for name in methods:
func = getattr(cls, name)
# required positional arguments
pos_args = 1 # start at one, as we assume "self" is positional_only
kwd_args = [] # [name:str, ...]
sig = iter(inspect.signature(func).parameters.values())
next(sig)
for s in sig:
if s.default is s.empty:
if s.kind == s.POSITIONAL_ONLY:
pos_args += 1
continue
elif s.kind == s.POSITIONAL_OR_KEYWORD:
kwd_args.append(s.name)
continue
break
@wraps(func)
def overloaded(*args, **kwargs):
# most common case: missing positional arg or 1st arg is not a cls instance
isclass = len(args) < pos_args or not isinstance(args[0], cls)
# handle ambiguous signatures, func(self, arg:cls, *args, **kwargs);
# check if missing required positional_or_keyword arg
if not isclass:
for i in range(len(args)-pos_args,len(kwd_args)):
if kwd_args[i] not in kwargs:
isclass = True
break
# class method
if isclass:
return func(cls, *args, **kwargs)
# instance method
return func(*args, **kwargs)
setattr(cls, name, overloaded)
class Foo:
def foo(self, *args, **kwargs):
isclass = self is Foo
print("foo {} method called".format(["instance","class"][isclass]))
class_overload(Foo, ["foo"])
Foo.foo() # "foo class method called"
Foo().foo() # "foo instance method called"
You can use the isclass
bool to implement the different logic for class vs instance method.
The class_overload
function is a bit beefy and will need to inspect the signature when the class is declared. But the actual logic in the runtime decorator (overloaded
) should be quite fast.
There's one signature that this solution won't work for: a method with an optional, first, positional argument of type Foo
. It's impossible to tell if we are calling the static or instance method just by the signature in this case. For example:
def bad_foo(self, other:Foo=None):
...
bad_foo(f) # f.bad_foo(None) or Foo.bad_foo(f) ???
Note, this solution may also report an incorrect isclass
value if you pass in incorrect arguments to the method (a programmer error, so may not be important to you).
We can get a possibly more robust solution by doing the reverse of this: first start with a classmethod, and then create an instance method overload of it. This is essentially the same idea as @Dologan's answer, though I think mine is a little less boilerplatey if you need to do this on several methods:
from types import MethodType
def instance_overload(self, methods):
""" Adds instance overloads for one or more classmethods"""
for name in methods:
setattr(self, name, MethodType(getattr(self, name).__func__, self))
class Foo:
def __init__(self):
instance_overload(self, ["foo"])
@classmethod
def foo(self, *args, **kwargs):
isclass = self is Foo
print("foo {} method called:".format(["instance","class"][isclass]))
Foo.foo() # "foo class method called"
Foo().foo() # "foo instance method called"
Not counting the code for class_overload
or instance_overload
, the code is equally succinct. Often signature introspection is touted as the "pythonic" way to do these kinds of things. But I think I'd recommend using the instance_method
solution instead; isclass
will be correct for any method signature, including cases where you call with incorrect arguments (a programmer error).