Provided that stored procs would despite be a viable alternative for you, here's one possible solution to your problem ...
First, let's make that nice base64encode()
function of Tim Hall's into a procedure ...
create or replace procedure base64encode
( i_blob in blob
, io_clob in out nocopy clob )
is
l_step pls_integer := 22500; -- make sure you set a multiple of 3 not higher than 24573
l_converted varchar2(32767);
l_buffer_size_approx pls_integer := 1048576;
l_buffer clob;
begin
dbms_lob.createtemporary(l_buffer, true, dbms_lob.call);
for i in 0 .. trunc((dbms_lob.getlength(i_blob) - 1 )/l_step) loop
l_converted := utl_raw.cast_to_varchar2(utl_encode.base64_encode(dbms_lob.substr(i_blob, l_step, i * l_step + 1)));
dbms_lob.writeappend(l_buffer, length(l_converted), l_converted);
if dbms_lob.getlength(l_buffer) >= l_buffer_size_approx then
dbms_lob.append(io_clob, l_buffer);
dbms_lob.trim(l_buffer, 0);
end if;
end loop;
dbms_lob.append(io_clob, l_buffer);
dbms_lob.freetemporary(l_buffer);
end;
The "trick" here is to directly use the persistent LOB locators in calls to procedures/functions. Why "persistent"? Because if you create a function that returns a LOB, then there's a temporary LOB created in background and this means some TEMP disk/memory usage and LOB content copying involved. For large LOBs this may imply a performance hit. In order to satisfy your requirement of making this the most performing possible, you should avoid this TEMP space usage. Hence, for this approach, a stored procedure instead of a function must be used.
Then, of course, the procedure must be fed with persistent LOB locators. You have to do that, again, with a stored procedure, where you e.g. insert an empty LOB (effectively creating a new LOB locator) to a table first, and then supplying that newly created LOB locator to the base64 encoding routine ...
create or replace procedure load_and_encode_image
( i_file_name in varchar2 )
is
l_input_bfile bfile := bfilename('DIR_ANYTHING', i_file_name);
l_image_base64_lob test.imageBase64%type;
l_image_raw test.image%type;
begin
insert into test(image, imageBase64)
values (empty_blob(), empty_clob())
returning image, imageBase64
into l_image_raw, l_image_base64_lob;
begin
dbms_lob.fileopen(l_input_bfile);
dbms_lob.loadfromfile(
dest_lob => l_image_raw,
src_lob => l_input_bfile,
amount => dbms_lob.getlength(l_input_bfile)
);
dbms_lob.fileclose(l_input_bfile);
exception
when others then
if dbms_lob.fileisopen(l_input_bfile) = 1 then
dbms_lob.fileclose(l_input_bfile);
end if;
raise;
end;
base64encode(
i_blob => l_image_raw,
io_clob => l_image_base64_lob
);
end;
Note: Of course, if you base64-encode only small files (the actual size depends on your PGA settings, I guess; a question for a DBA, this is), then the function-based approach may be equally performing than this procedure-based one. Base64-encoding a 200MB file on my laptop took 55 seconds with the function+update approach, 14 seconds with the procedure approach. Not exactly a speed demon, so choose what suits your needs.
Note: I believe this procedure-based approach may be further speeded up by reading the file to inmemory chunks in loop, base64-encoding the chunks to another inmemory chunks and appending them both to the target persistent LOBs. That way you should make the workload even easier by avoiding re-reading the full test.image
LOB contents by the base64encode()
procedure.