In a modular way: an example using slqalchemy with automap and mysql.
database.py:
from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
from sqlalchemy import create_engine
Base = automap_base()
engine = create_engine('mysql://user:pass@localhost:3306/database_name', echo=True)
Base.prepare(engine, reflect=True)
# Map the tables
State = Base.classes.states
session = Session(engine, autoflush=False)
export_to_csv.py:
from databases import *
import csv
def export():
q = session.query(State)
file = './data/states.csv'
with open(file, 'w') as csvfile:
outcsv = csv.writer(csvfile, delimiter=',',quotechar='"', quoting = csv.QUOTE_MINIMAL)
header = State.__table__.columns.keys()
outcsv.writerow(header)
for record in q.all():
outcsv.writerow([getattr(record, c) for c in header ])
if __name__ == "__main__":
export()
Results:
name,abv,country,is_state,is_lower48,slug,latitude,longitude,population,area
Alaska,AK,US,y,n,alaska,61.370716,-152.404419,710231,571951.25
Alabama,AL,US,y,y,alabama,32.806671,-86.79113,4779736,50744.0
Arkansas,AR,US,y,y,arkansas,34.969704,-92.373123,2915918,52068.17
Arizona,AZ,US,y,y,arizona,33.729759,-111.431221,6392017,113634.57
California,CA,US,y,y,california,36.116203,-119.681564,37253956,155939.52
Colorado,CO,US,y,y,colorado,39.059811,-105.311104,5029196,103717.53
Connecticut,CT,US,y,y,connecticut,41.597782,-72.755371,3574097,4844.8
District of Columbia,DC,US,n,n,district-of-columbia,38.897438,-77.026817,601723,68.34
Delaware,DE,US,y,y,delaware,39.318523,-75.507141,897934,1953.56
Florida,FL,US,y,y,florida,27.766279,-81.686783,18801310,53926.82
Georgia,GA,US,y,y,georgia,33.040619,-83.643074,9687653,57906.14