Is there any Spark function that allows to split a collection into several RDDs according to some creteria? Such function would allow to avoid excessive itteration. For example:
def main(args: Array[String]) {
val logFile = "file.txt"
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache()
val lineAs = logData.filter(line => line.contains("a")).saveAsTextFile("linesA.txt")
val lineBs = logData.filter(line => line.contains("b")).saveAsTextFile("linesB.txt")
}
In this example I have to iterate 'logData` twice just to write results in two separate files:
val lineAs = logData.filter(line => line.contains("a")).saveAsTextFile("linesA.txt")
val lineBs = logData.filter(line => line.contains("b")).saveAsTextFile("linesB.txt")
It would be nice instead to have something like this:
val resultMap = logData.map(line => if line.contains("a") ("a", line) else if line.contains("b") ("b", line) else (" - ", line)
resultMap.writeByKey("a", "linesA.txt")
resultMap.writeByKey("b", "linesB.txt")
Any such thing?