I do not know the multiplicative inverse algorithm but it sounds like modification of Montgomery Reduction or Barrett's Reduction.
I do bigint divisions a bit differently.
See bignum division. Especially take a look at the approximation divider and the 2 links there. One is my fixed point divider and the others are fast multiplication algos (like karatsuba,Schönhage-Strassen on NTT) with measurements, and a link to my very fast NTT implementation for 32bit Base.
I'm not sure if the inverse multiplicant is the way.
It is mostly used for modulo operation where the divider is constant. I'm afraid that for arbitrary divisions the time and operations needed to acquire bigint inverse can be bigger then the standard divisions itself, but as I am not familiar with it I could be wrong.
The most common divider in use I saw in implemetations are Newton–Raphson division which is very similar to approximation divider in the link above.
Approximation/iterative dividers usually use multiplication which define their speed.
For small enough numbers is usually long binary division and 32/64bit digit base division fast enough if not fastest: usually they have small overhead, and let n
be the max value processed (not the number of digits!)
Binary division example:
Is O(log32(n).log2(n)) = O(log^2(n))
.
It loops through all significant bits. In each iteration you need to compare, sub, add, bitshift
. Each of those operations can be done in log32(n)
, and log2(n)
is the number of bits.
Here example of binary division from one of my bigint templates (C++):
template <DWORD N> void uint<N>::div(uint &c,uint &d,uint a,uint b)
{
int i,j,sh;
sh=0; c=DWORD(0); d=1;
sh=a.bits()-b.bits();
if (sh<0) sh=0; else { b<<=sh; d<<=sh; }
for (;;)
{
j=geq(a,b);
if (j)
{
c+=d;
sub(a,a,b);
if (j==2) break;
}
if (!sh) break;
b>>=1; d>>=1; sh--;
}
d=a;
}
N
is the number of 32 bit DWORD
s used to store a bigint number.
c = a / b
d = a % b
qeq(a,b)
is a comparison: a >= b
greater or equal (done in log32(n)=N
)
It returns 0
for a < b
, 1
for a > b
, 2
for a == b
sub(c,a,b)
is c = a - b
The speed boost is gained from that this does not use multiplication (if you do not count the bit shift)
If you use digit with a big base like 2^32 (ALU blocks), then you can rewrite the whole in polynomial like style using 32bit build in ALU operations.
This is usually even faster then binary long division, the idea is to process each DWORD as a single digit, or recursively divide the used arithmetic by half until hit the CPU capabilities.
See division by half-bitwidth arithmetics
On top of all that while computing with bignums
If you have optimized basic operations, then the complexity can lower even further as sub-results get smaller with iterations (changing the complexity of basic operations) A nice example of that are NTT based multiplications.
The overhead can mess thing up.
Due to this the runtime sometimes does not copy the big O complexity, so you should always measure the tresholds and use faster approach for used bit-count to get the max performance and optimize what you can.