As @Kevin mentioned, the only way to know for sure with your exact data would be to compare and contrast both methods, but from what you've described, I don't see why this would be different from any other case where a string was either the primary key in a table or part of a unique index.
What can be said up front is that your indexes will probably larger, since they have to store larger string values, and in theory the comparisons for the index will take a bit longer, but I wouldn't advocate premature optimization if to do so would be painful.
In my experience, I have seen very good performance on a unique index using md5sums on a table with billions of rows. I have found it tends to be other factors about a query which tend to result in performance issues. For example, when you end up needing to query over a very large swath of the table, say hundreds of thousands of rows, a sequential scan ends up being the better choice, so that's what the query planner chooses, and it can take much longer.
There are other mitigating strategies for that type of situation, such as chunking the query and then UNION
ing the results (e.g. a manual simulation of the sort of thing that would be done in Hive or Impala in the Hadoop sphere).
Re: your concern about indexing of text, while I'm sure there are some cases where a dataset produces a key distribution such that it performs terribly, GUIDs, much like md5sums, sha1's, etc. should index quite well in general and not require sequential scans (unless, as I mentioned above, you query a huge swath of the table).
One of the big factors about how an index would perform is how many unique values there are. For that reason, a boolean index on a table with a large number of rows isn't likely to help, since it basically is going to end up having a huge number of row collisions for any of the values (true, false, and potentially NULL) in the index. A GUID index, on the other hand, is likely to have a huge number of values with no collision (in theory definitionally, since they are GUIDs).
Edit in response to comment from OP:
So are you saying that a UUID guid is the same thing as a Text guid as far as the indexing goes? Our entire table structure is using Text fields with a guid-like string, but I'm not sure Postgre recognizes it as a Guid. Just a string that happens to be unique.
Not literally the same, no. However, I am saying that they should have very similar performance for this particular case, and I don't see why optimizing up front is worth doing, especially given that you say to do so would be a very involved task.
You can always change things later if, in your specific environment, you run into performance problems. However, as I mentioned earlier, I think if you hit that scenario, there are other things that would likely yield better performance than changing the PK data types.
A UUID is a 128-bit data type (so, 16 bytes), whereas text has 1 or 4 bytes of overhead plus the actual length of the string. For a GUID, that would mean a minimum of 33 bytes, but could vary significantly depending on the encoding used.
So, with that in mind, certainly indexes of text-based UUIDs will be larger since the values are larger, and comparing two strings versus two numerical values is in theory less efficient, but is not something that's likely to make a huge difference in this case, at least not usual cases.
I would not optimize up front when to do so would be a significant cost and is likely to never be needed. That bridge can be crossed if that time does come (although I would persue other query optimizations first, as I mentioned above).
Regarding whether Postgres knows the string is a GUID, it definitely does not by default. As far as it's concerned, it's just a unique string. But that should be fine for most cases, e.g. matching rows and such. If you find yourself needing some behavior that specifically requires a GUID (for example, some non-equality based comparisons where a GUID comparison may differ from a purely lexical one), then you can always cast the string to a UUID, and Postgres will treat the value as such during that query.
e.g. for a text column foo
, you can do foo::uuid
to cast it to a uuid
.
There's also a module available for generating uuid
s, uuid-ossp.