I need a dictionary data structure that store dictionaries as seen below:
custom = {1: {'a': np.zeros(10), 'b': np.zeros(100)},
2: {'c': np.zeros(20), 'd': np.zeros(200)}}
But the problem is that I iterate over this data structure many times in my code. Every time I iterate over it, I need the order of iteration to be respected because all the elements in this complex data structure are mapped to a 1D array (serialized if you will), and thus the order is important. I thought about writing a ordered dict
of ordered dict
for that matter, but I'm not sure this is the right solution as it seems I may be choosing the wrong data structure. What would be the most adequate solution for my case?
UPDATE
So this is what I came up with so far:
class Test(list):
def __init__(self, *args, **kwargs):
super(Test, self).__init__(*args, **kwargs)
for k,v in args[0].items():
self[k] = OrderedDict(v)
self.d = -1
self.iterator = iter(self[-1].keys())
self.etype = next(self.iterator)
self.idx = 0
def __iter__(self):
return self
def __next__(self):
try:
self.idx += 1
return self[self.d][self.etype][self.idx-1]
except IndexError:
self.etype = next(self.iterator)
self.idx = 0
return self[self.d][self.etype][self.idx-1]
def __call__(self, d):
self.d = -1 - d
self.iterator = iter(self[self.d].keys())
self.etype = next(self.iterator)
self.idx = 0
return self
def main(argv=()):
tst = Test(elements)
for el in tst:
print(el)
# loop over a lower dimension
for el in tst(-2):
print(el)
print(tst)
return 0
if __name__ == "__main__":
sys.exit(main())
I can iterate as many times as I want in this ordered structure, and I implemented __call__
so I can iterate over the lower dimensions. I don't like the fact that if there isn't a lower dimension present in the list, it doesn't give me any errors. I also have the feeling that every time I call return self[self.d][self.etype][self.idx-1]
is less efficient than the original iteration over the dictionary. Is this true? How can I improve this?