Runtime.
JLS and JVM specifications specify javac compilation to class files which contain constant declarations (in the Constant Pool) and constant usage in code (which javac can inline as primitive / object reference values). For compile-time String constants, the compiler generates code to construct String instances and to call String.intern() for them, so that the JVM interns String constants automatically. This is a behavioural requirement from JLS:
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.28
Compile-time constant expressions of type String are always "interned" so as to share unique instances, using the method String.intern.
But these specs have neither the concept nor the definition of any particular String intern pool structures/references/handles whether compile time or runtime. (Of course, in general, the JVM spec does not mandate any particular internal structure for objects: http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.7)
The reason that no intern pool structures are mentioned is because they're handled entirely with the String class. The intern pool is a private static/class-level structure of the String class (unspecified by JLS & JVM specs & javadoc).
Objects are added to the intern pool when String.intern() is called at runtime. The intern pool is leveraged privately by the String class - when code create new String instances and calls String.intern(), the String class determines whether to reuse existing internal data. Optimisation can be carried out by the JIT compiler - at runtime.
There's no compile-time contribution here, bar the vanilla inlining of constant values.