I'm trying to write a function which pushes an element onto the end of a sorted vector only if the element is larger than the last element already in the vector, otherwise returns an error with a ref to the largest element. This doesn't seem to violate any borrowing rules as far as I cant tell, but the borrow checker doesn't like it. I don't understand why.
struct MyArray<K, V>(Vec<(K, V)>);
impl<K: Ord, V> MyArray<K, V> {
pub fn insert_largest(&mut self, k: K, v: V) -> Result<(), &K> {
{
match self.0.iter().next_back() {
None => (),
Some(&(ref lk, _)) => {
if lk > &k {
return Err(lk);
}
}
};
}
self.0.push((k, v));
Ok(())
}
}
error[E0502]: cannot borrow `self.0` as mutable because it is also borrowed as immutable
--> src/main.rs:15:9
|
6 | match self.0.iter().next_back() {
| ------ immutable borrow occurs here
...
15 | self.0.push((k, v));
| ^^^^^^ mutable borrow occurs here
16 | Ok(())
17 | }
| - immutable borrow ends here
Why doesn't this work?
In response to Paolo Falabella's answer.
We can translate any function with a return statement into one without a return statement as follows:
fn my_func() -> &MyType {
'inner: {
// Do some stuff
return &x;
}
// And some more stuff
}
Into
fn my_func() -> &MyType {
let res;
'outer: {
'inner: {
// Do some stuff
res = &x;
break 'outer;
}
// And some more stuff
}
res
}
From this, it becomes clear that the borrow outlives the scope of 'inner
.
Is there any problem with instead using the following rewrite for the purpose of borrow-checking?
fn my_func() -> &MyType {
'outer: {
'inner: {
// Do some stuff
break 'outer;
}
// And some more stuff
}
panic!()
}
Considering that return statements preclude anything from happening afterwards which might otherwise violate the borrowing rules.