Keeps getting better!
In this answer we present list_long_nondecreasing_subseq__NEW/2
, a drop-in replacement of list_long_nondecreasing_subseq/2
—presented in this earlier answer.
Let's cut to the chase and define list_long_nondecreasing_subseq__NEW/2
!
:- use_module([library(clpfd), library(lists), library(random), library(between)]).
list_long_nondecreasing_subseq__NEW(Zs, Xs) :-
minimum(Min, Zs),
append(Prefix, Suffix, Zs),
same_length(Suffix, Xs),
zs_skipped_subseq_taken0(Zs, Prefix, Xs, Min).
zs_skipped_subseq_taken0([], _, [], _).
zs_skipped_subseq_taken0([E|Es], Ps, [E|Xs], E0) :-
E0 #=< E,
zs_skipped_subseq_taken0(Es, Ps, Xs, E).
zs_skipped_subseq_taken0([E|Es], [_|Ps], Xs, E0) :-
zs_skipped_subseq_taken0_min0_max0(Es, Ps, Xs, E0, E, E).
zs_skipped_subseq_taken0_min0_max0([], _, [], E0, _, Max) :-
Max #< E0.
zs_skipped_subseq_taken0_min0_max0([E|Es], Ps, [E|Xs], E0, Min, Max) :-
E0 #=< E,
E0 #> Min #\/ Min #> E,
E0 #> Max #\/ Max #> E,
zs_skipped_subseq_taken0(Es, Ps, Xs, E).
zs_skipped_subseq_taken0_min0_max0([E|Es], [_|Ps], Xs, E0, Min0, Max0) :-
Min #= min(Min0,E),
Max #= max(Max0,E),
zs_skipped_subseq_taken0_min0_max0(Es, Ps, Xs, E0, Min, Max).
So ... does it still work as before? Let's run some tests and compare the answer sequences:
| ?- setrand(random(29251,13760,3736,425005073)),
between(7, 23, N),
nl,
write(n=N),
write(' '),
length(Zs, N),
between(1, 10, _),
maplist(random(1,N), Zs),
findall(Xs1, list_long_nondecreasing_subseq( Zs,Xs1), Xss1),
findall(Xs2, list_long_nondecreasing_subseq__NEW(Zs,Xs2), Xss2),
( Xss1 == Xss2 -> true ; throw(up) ),
length(Xss2,L),
write({L}),
false.
n=7 {3}{8}{3}{7}{2}{5}{4}{4}{8}{4}
n=8 {9}{9}{9}{8}{4}{4}{7}{5}{6}{9}
n=9 {9}{8}{5}{7}{10}{7}{9}{4}{5}{4}
n=10 {7}{12}{7}{14}{13}{19}{13}{17}{10}{7}
n=11 {14}{17}{7}{9}{17}{21}{14}{10}{10}{21}
n=12 {25}{18}{20}{10}{32}{35}{7}{30}{15}{11}
n=13 {37}{19}{18}{22}{20}{14}{10}{11}{8}{14}
n=14 {27}{9}{18}{10}{20}{29}{69}{28}{10}{33}
n=15 {17}{24}{13}{26}{32}{14}{22}{28}{32}{41}
n=16 {41}{55}{35}{73}{44}{22}{46}{47}{26}{23}
n=17 {54}{43}{38}{110}{50}{33}{48}{64}{33}{56}
n=18 {172}{29}{79}{36}{32}{99}{55}{48}{83}{37}
n=19 {225}{83}{119}{61}{27}{67}{48}{65}{90}{96}
n=20 {58}{121}{206}{169}{111}{66}{233}{57}{110}{146}
n=21 {44}{108}{89}{99}{149}{148}{92}{76}{53}{47}
n=22 {107}{137}{221}{79}{172}{156}{184}{78}{162}{112}
n=23 {163}{62}{76}{192}{133}{372}{101}{290}{84}{378}
no
All answer sequences were exactly identical! ... So, how about runtimes?
Let's run some more queries using SICStus Prolog 4.3.2 and pretty-print the answers!
?- member(N, [15,20,25,30,35,40,45,50]),
length(Zs, N),
_NN #= N*N,
maplist(random(1,_NN), Zs),
call_time(once(list_long_nondecreasing_subseq( Zs, Xs )), T1),
call_time(once(list_long_nondecreasing_subseq__NEW(Zs,_Xs2)), T2),
Xs == _Xs2,
length(Xs,L).
N = 15, L = 4, T1 = 20, T2 = 0, Zs = [224,150,161,104,134,43,9,111,76,125,50,68,202,178,148], Xs = [104,111,125,202] ;
N = 20, L = 6, T1 = 60, T2 = 10, Zs = [71,203,332,366,350,19,241,88,370,100,288,199,235,343,181,90,63,149,215,285], Xs = [71,88,100,199,235,343] ;
N = 25, L = 7, T1 = 210, T2 = 20, Zs = [62,411,250,222,141,292,276,94,548,322,13,317,68,488,137,33,80,167,101,475,475,429,217,25,477], Xs = [62,250,292,322,475,475,477] ;
N = 30, L = 10, T1 = 870, T2 = 30, Zs = [67,175,818,741,669,312,99,23,478,696,63,793,280,364,677,254,530,216,291,660,218,664,476,556,678,626,75,834,578,850], Xs = [67,175,312,478,530,660,664,678,834,850] ;
N = 35, L = 7, T1 = 960, T2 = 120, Zs = [675,763,1141,1070,299,650,1061,1184,512,905,139,719,844,8,1186,1006,400,690,29,791,308,1180,819,331,482,982,81,574,1220,431,416,357,1139,636,591], Xs = [299,650,719,844,1006,1180,1220] ;
N = 40, L = 9, T1 = 5400, T2 = 470, Zs = [958,1047,132,1381,22,991,701,1548,470,1281,358,32,605,1270,692,1020,350,794,1451,11,985,1196,504,1367,618,1064,961,463,736,907,1103,719,1385,1026,935,489,1053,380,637,51], Xs = [132,470,605,692,794,985,1196,1367,1385] ;
N = 45, L = 10, T1 = 16570, T2 = 1580, Zs = [1452,171,442,1751,160,1046,470,450,1245,971,1574,901,1613,1214,1849,1805,341,34,1923,698,156,1696,717,1708,1814,1548,463,421,1584,190,1195,1563,1772,1639,712,693,1848,1531,250,783,1654,1732,1333,717,1322], Xs = [171,442,1046,1245,1574,1613,1696,1708,1814,1848] ;
N = 50, L = 11, T1 = 17800, T2 = 1360, Zs = [2478,2011,2411,1127,1719,1286,1081,2042,1166,86,355,894,190,7,1973,1912,753,1411,1082,70,2142,417,1609,1649,2329,2477,1324,37,1781,1897,2415,1018,183,2422,1619,1446,1461,271,56,2399,1681,267,977,826,2145,2318,2391,137,55,1995], Xs = [86,355,894,1411,1609,1649,1781,1897,2145,2318,2391] ;
false.
Of course, the baroque approach shown in this answer simply cannot compete with "serious" suitable algorithms for determining the lis—still, getting 10X speedup always feels good:)