I think you can use comprehension:
import pandas as pd
flagInfoSeries = pd.Series(({'a': 1, 'b': 2}, {'a': 10, 'b': 20}))
print flagInfoSeries
0 {u'a': 1, u'b': 2}
1 {u'a': 10, u'b': 20}
dtype: object
print pd.DataFrame(flagInfoSeries.to_dict()).T
a b
0 1 2
1 10 20
print pd.DataFrame([x for x in flagInfoSeries])
a b
0 1 2
1 10 20
Timing:
In [203]: %timeit pd.DataFrame(flagInfoSeries.to_dict()).T
The slowest run took 4.46 times longer than the fastest. This could mean that an intermediate result is being cached
1000 loops, best of 3: 554 µs per loop
In [204]: %timeit pd.DataFrame([x for x in flagInfoSeries])
The slowest run took 5.11 times longer than the fastest. This could mean that an intermediate result is being cached
1000 loops, best of 3: 361 µs per loop
In [209]: %timeit flagInfoSeries.apply(lambda dict: pd.Series(dict))
The slowest run took 4.76 times longer than the fastest. This could mean that an intermediate result is being cached
1000 loops, best of 3: 751 µs per loop
EDIT:
If you need keep index, try add index=flagInfoSeries.index
to DataFrame
constructor:
print pd.DataFrame([x for x in flagInfoSeries], index=flagInfoSeries.index)
Timings:
In [257]: %timeit pd.DataFrame([x for x in flagInfoSeries], index=flagInfoSeries.index)
1000 loops, best of 3: 350 µs per loop
Sample:
import pandas as pd
flagInfoSeries = pd.Series(({'a': 1, 'b': 2}, {'a': 10, 'b': 20}))
flagInfoSeries.index = [2,8]
print flagInfoSeries
2 {u'a': 1, u'b': 2}
8 {u'a': 10, u'b': 20}
print pd.DataFrame(flagInfoSeries.to_dict()).T
a b
2 1 2
8 10 20
print pd.DataFrame([x for x in flagInfoSeries], index=flagInfoSeries.index)
a b
2 1 2
8 10 20