Thanks goes to the answer by Nuno André, who showed how to use ctypes to interact with Windows APIs. I have written an example implementation using his hints.
The ctypes
library is included with Python since v2.5, which means that almost every user has it. And it's a way cleaner interface than old and dead libraries like win32gui
(last updated in 2017 as of this writing). ((Update in late 2020: The dead win32gui
library has come back to life with a rename to pywin32, so if you want a maintained library, it's now a valid option again. But that library is 6% slower than my code.))
Documentation is here: https://docs.python.org/3/library/ctypes.html (You must read its usage help if you wanna write your own code, otherwise you can cause segmentation fault crashes, hehe.)
Basically, ctypes includes bindings for the most common Windows DLLs. Here is how you can retrieve the title of the foreground window in pure Python, with no external libraries needed! Just the built-in ctypes! :-)
The coolest thing about ctypes is that you can Google any Windows API for anything you need, and if you want to use it, you can do it via ctypes!
Python 3 Code:
from typing import Optional
from ctypes import wintypes, windll, create_unicode_buffer
def getForegroundWindowTitle() -> Optional[str]:
hWnd = windll.user32.GetForegroundWindow()
length = windll.user32.GetWindowTextLengthW(hWnd)
buf = create_unicode_buffer(length + 1)
windll.user32.GetWindowTextW(hWnd, buf, length + 1)
# 1-liner alternative: return buf.value if buf.value else None
if buf.value:
return buf.value
else:
return None
Performance is extremely good: 0.01
MILLISECONDS on my computer (0.00001
seconds).
Will also work on Python 2 with very minor changes. If you're on Python 2, I think you only have to remove the type annotations (from typing import Optional
and -> Optional[str]
). :-)
Enjoy!
Win32 Technical Explanations:
The length
variable is the length of the actual text in UTF-16 (Windows Wide "Unicode") CHARACTERS. (It is NOT the number of BYTES.) We have to add + 1
to add room for the null terminator at the end of C-style strings. If we don't do that, we would not have enough space in the buffer to fit the final real character of the actual text, and Windows would truncate the returned string (it does that to ensure that it fits the super important final string Null-terminator).
The create_unicode_buffer
function allocates room for that many UTF-16 CHARACTERS.
Most (or all? always read Microsoft's MSDN docs!) Windows APIs related to Unicode text take the buffer length as CHARACTERS, NOT as bytes.
Also look closely at the function calls. Some end in W
(such as GetWindowTextLengthW
). This stands for "Wide string", which is the Windows name for Unicode strings. It's very important that you do those W
calls to get proper Unicode strings (with international character support).
PS: Windows has been using Unicode for a long time. I know for a fact that Windows 10 is fully Unicode and only wants the W
function calls. I don't know the exact cutoff date when older versions of Windows used other multi-byte string formats, but I think it was before Windows Vista, and who cares? Old Windows versions (even 7 and 8.1) are dead and unsupported by Microsoft.
Again... enjoy! :-)
UPDATE in Late 2020, Benchmark vs the pywin32
library:
import time
import win32ui
from typing import Optional
from ctypes import wintypes, windll, create_unicode_buffer
def getForegroundWindowTitle() -> Optional[str]:
hWnd = windll.user32.GetForegroundWindow()
length = windll.user32.GetWindowTextLengthW(hWnd)
buf = create_unicode_buffer(length + 1)
windll.user32.GetWindowTextW(hWnd, buf, length + 1)
return buf.value if buf.value else None
def getForegroundWindowTitle_Win32UI() -> Optional[str]:
# WARNING: This code sometimes throws an exception saying
# "win32ui.error: No window is is in the foreground."
# which is total nonsense. My function doesn't fail that way.
return win32ui.GetForegroundWindow().GetWindowText()
iterations = 1_000_000
start_time = time.time()
for x in range(iterations):
foo = getForegroundWindowTitle()
elapsed1 = time.time() - start_time
print("Elapsed 1:", elapsed1, "seconds")
start_time = time.time()
for x in range(iterations):
foo = getForegroundWindowTitle_Win32UI()
elapsed2 = time.time() - start_time
print("Elapsed 2:", elapsed2, "seconds")
win32ui_pct_slower = ((elapsed2 / elapsed1) - 1) * 100
print("Win32UI library is", win32ui_pct_slower, "percent slower.")
Typical result after doing multiple runs on an AMD Ryzen 3900x:
My function: 4.5769994258880615 seconds
Win32UI library: 4.8619983196258545 seconds
Win32UI library is 6.226762715455125 percent slower.
However, the difference is small, so you may want to use the library now that it has come back to life (it had previously been dead since 2017). But you're going to have to deal with that library's weird "no window is in the foreground" exception, which my code doesn't suffer from (see the code comments in the benchmark code).
Either way... enjoy!