How do I calculate distance between two GPS coordinates (using latitude and longitude)?
-
3This algorithm is known as the [Great Circle distance](http://en.wikipedia.org/wiki/Great-circle_distance). – Greg Hewgill Dec 13 '08 at 22:14
-
@GregHewgill, the first sentence of that article says "This article is about shortest-distance on a sphere." Ie clearly not applicable to GPS coordinates. – zabop Dec 11 '21 at 23:56
31 Answers
Calculate the distance between two coordinates by latitude and longitude, including a Javascript implementation.
West and South locations are negative. Remember minutes and seconds are out of 60 so S31 30' is -31.50 degrees.
Don't forget to convert degrees to radians. Many languages have this function. Or its a simple calculation: radians = degrees * PI / 180
.
function degreesToRadians(degrees) {
return degrees * Math.PI / 180;
}
function distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
var earthRadiusKm = 6371;
var dLat = degreesToRadians(lat2-lat1);
var dLon = degreesToRadians(lon2-lon1);
lat1 = degreesToRadians(lat1);
lat2 = degreesToRadians(lat2);
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadiusKm * c;
}
Here are some examples of usage:
distanceInKmBetweenEarthCoordinates(0,0,0,0) // Distance between same
// points should be 0
0
distanceInKmBetweenEarthCoordinates(51.5, 0, 38.8, -77.1) // From London
// to Arlington
5918.185064088764

- 26,308
- 17
- 56
- 95

- 616,129
- 168
- 910
- 942
-
17In case it's not obvious, the toRad() method is a customization to the **Number** prototype such as: `Number.prototype.toRad = function() { return this * (Math.PI / 180); }; `. Or, as indicated below, you can replace `(Math.PI/2)` with 0.0174532925199433 (...whatever precision you deem necessary) for increased performance. – Vinney Kelly Jul 23 '13 at 06:05
-
54If anyone, specifically those of you who don't look for end of line comments, is staring at this formula and looking for a unit of distance, the unit is km. :) – Dylan Knowles Sep 27 '13 at 18:01
-
Why are the cosine of lat1 and lat2 calculated and not over lon1 and lon2? – Veda May 14 '15 at 11:09
-
1@VinneyKelly Small typo but replace (Math.PI/180) not (Math.PI/2), thanks for everyones help – Patrick Murphy Jul 21 '15 at 16:44
-
-
What units is this displayed in? I printed out `d`, but I don't know what the number is being printed. I'm trying to figure out how to convert this to miles. – Christian Kreiter Dec 11 '15 at 20:10
-
1@ChristianKRider Look at the first line. Think about what `R` normally means in math, then look up relevant, Earth-related quantities to see if the numbers match. – Nic Feb 12 '17 at 13:01
-
@cletus Is there a faster way to compare which of two points is farther from a third than a formula that requires `sqrt` and `atan2` (even if the former is faster than it used to be) – Nic Feb 12 '17 at 13:02
-
7For imperial units (miles) you could change `earthRadiusKm` to be `var earthRadiusMiles = 3959;`, fyi. – chapeljuice Aug 09 '17 at 21:53
-
1Another result in google maps... https://drive.google.com/open?id=1H_5Q5HPJ09FMmqdTj1OW6ETOFJVTy1tJ&usp=sharing – Jessé Catrinck Feb 13 '18 at 15:35
-
And if we wanted to give variable "a" a good name it would be halfLapsAroundGlobe (so 1 is the furthest two points can be, like Nelson (New Zealand, -41.303003, 173.256136) and Mogadouro (Portugal, 41.341175, -6.709340) – FlorianB Dec 05 '19 at 14:57
Look for haversine with Google; here is my solution:
#include <math.h>
#include "haversine.h"
#define d2r (M_PI / 180.0)
//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * d2r;
double dlat = (lat2 - lat1) * d2r;
double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
double c = 2 * atan2(sqrt(a), sqrt(1-a));
double d = 6367 * c;
return d;
}
double haversine_mi(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * d2r;
double dlat = (lat2 - lat1) * d2r;
double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
double c = 2 * atan2(sqrt(a), sqrt(1-a));
double d = 3956 * c;
return d;
}

- 23,010
- 22
- 73
- 116

- 639
- 5
- 2
-
-
4You can replace (M_PI / 180.0) with 0.0174532925199433 for better performance. – Hlung Aug 01 '11 at 09:19
-
3In terms of performance: one could calculate sin(dlat/2.0) only once, store it in variable a1, and instead of pow(,2) it's MUCH better to use a1*a1. The same for the other pow(,2). – pms Oct 27 '11 at 23:34
-
79
-
23There is no need to "optimize" (M_PI / 180.0) to a constant that no one understands without context. The compiler calculates these fixed terms for you! – Patrick Cornelissen Sep 19 '16 at 05:35
-
1@hlung please test such recommendations before submitting. It does not optimize anything unless -O is disabled. Your recommendation does not work. Even more, it makes previously readable code unreadable. Which is also important. – Tõnu Samuel Jan 02 '18 at 06:58
-
2@TõnuSamuel Thank you very much for your comment. I really appreciate it. It makes sense that compiler with optimization enabled (-O) can pre-calculate operations of constants, making manual collapsing useless. I will test it out when I have time. – Hlung Jan 02 '18 at 15:47
C# Version of Haversine
double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);
private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}
private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
Here's a .NET Fiddle of this, so you can test it out with your own Lat/Longs.

- 39,692
- 27
- 110
- 158

- 479
- 4
- 2
-
1I've also added a checky .NET fiddle so people can easily test this out. – Pure.Krome Aug 15 '14 at 05:42
-
7the .Net Framework has a build in method GeoCoordinate.GetDistanceTo. The assembly System.Device has to be referenced. MSDN Article https://msdn.microsoft.com/en-us/library/system.device.location.geocoordinate.getdistanceto%28v=vs.110%29.aspx – fnx Feb 14 '16 at 18:12
Java Version of Haversine Algorithm based on Roman Makarov`s reply to this thread
public class HaversineAlgorithm {
static final double _eQuatorialEarthRadius = 6378.1370D;
static final double _d2r = (Math.PI / 180D);
public static int HaversineInM(double lat1, double long1, double lat2, double long2) {
return (int) (1000D * HaversineInKM(lat1, long1, lat2, long2));
}
public static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
* Math.pow(Math.sin(dlong / 2D), 2D);
double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
}

- 23,641
- 15
- 110
- 157

- 2,114
- 31
- 36
-
@Radu make sure you're using it correctly and not exchanging lat/log places when passing them to any method. – Paulo Miguel Almeida Dec 26 '16 at 17:48
-
1I got a reasonably close answer using this formula. I based the accuracy using this website: https://www.movable-type.co.uk/scripts/latlong.html which gave me `0.07149` km whereas your formula gave me `0.07156` which is an accuracy of about 99% – Janac Meena Sep 18 '19 at 20:40
This is very easy to do with geography type in SQL Server 2008.
SELECT geography::Point(lat1, lon1, 4326).STDistance(geography::Point(lat2, lon2, 4326))
-- computes distance in meters using eliptical model, accurate to the mm
4326 is SRID for WGS84 elipsoidal Earth model

- 389
- 2
- 3
Here's a Haversine function in Python that I use:
from math import pi,sqrt,sin,cos,atan2
def haversine(pos1, pos2):
lat1 = float(pos1['lat'])
long1 = float(pos1['long'])
lat2 = float(pos2['lat'])
long2 = float(pos2['long'])
degree_to_rad = float(pi / 180.0)
d_lat = (lat2 - lat1) * degree_to_rad
d_long = (long2 - long1) * degree_to_rad
a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
c = 2 * atan2(sqrt(a), sqrt(1 - a))
km = 6367 * c
mi = 3956 * c
return {"km":km, "miles":mi}

- 62,419
- 16
- 94
- 130
-
The math module contains a function named radians which converts from degrees to radians. `from math import radians` – Jordy Cuan Jun 07 '22 at 15:57
I needed to calculate a lot of distances between the points for my project, so I went ahead and tried to optimize the code, I have found here. On average in different browsers my new implementation runs 2 times faster than the most upvoted answer.
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
You can play with my jsPerf and see the results here.
Recently I needed to do the same in python, so here is a python implementation:
from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
return 12742 * asin(sqrt(a))
And for the sake of completeness: Haversine on wiki.

- 214,103
- 147
- 703
- 753
It depends on how accurate you need it to be. If you need pinpoint accuracy, it is best to look at an algorithm which uses an ellipsoid, rather than a sphere, such as Vincenty's algorithm, which is accurate to the mm.
-
3Please put all information to your answer instead of linking to external ressources – Nico Haase Mar 15 '21 at 14:12
-
3@NicoHaase Fair call, if perhaps a tad extemporaneous - was over 12 years ago, and this was a slightly different place back then. – seanb Mar 16 '21 at 02:10
PHP version:
(Remove all deg2rad()
if your coordinates are already in radians.)
$R = 6371; // km
$dLat = deg2rad($lat2-$lat1);
$dLon = deg2rad($lon2-$lon1);
$lat1 = deg2rad($lat1);
$lat2 = deg2rad($lat2);
$a = sin($dLat/2) * sin($dLat/2) +
sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2);
$c = 2 * atan2(sqrt($a), sqrt(1-$a));
$d = $R * $c;

- 726
- 9
- 21
Here it is in C# (lat and long in radians):
double CalculateGreatCircleDistance(double lat1, double long1, double lat2, double long2, double radius)
{
return radius * Math.Acos(
Math.Sin(lat1) * Math.Sin(lat2)
+ Math.Cos(lat1) * Math.Cos(lat2) * Math.Cos(long2 - long1));
}
If your lat and long are in degrees then divide by 180/PI to convert to radians.

- 39,692
- 27
- 110
- 158
-
1This is the "spherical law of cosines" calculation which is the least accurate and most error-prone method of calculation of a great circle distance. – John Machin Jan 11 '17 at 02:27
I. Regarding "Breadcrumbs" method
- Earth radius is different on different Lat. This must be taken into consideration in Haversine algorithm.
- Consider Bearing change, which turns straight lines to arches (which are longer)
- Taking Speed change into account will turn arches to spirals (which are longer or shorter than arches)
- Altitude change will turn flat spirals to 3D spirals (which are longer again). This is very important for hilly areas.
Below see the function in C which takes #1 and #2 into account:
double calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
double rLat2, double rLon2, double rHeading2){
double rDLatRad = 0.0;
double rDLonRad = 0.0;
double rLat1Rad = 0.0;
double rLat2Rad = 0.0;
double a = 0.0;
double c = 0.0;
double rResult = 0.0;
double rEarthRadius = 0.0;
double rDHeading = 0.0;
double rDHeadingRad = 0.0;
if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
|| (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
|| (rLon2 > 180.0)) {
return -1;
};
rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
rLat2Rad = rLat2 * DEGREE_TO_RADIANS;
a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);
if (a == 0.0) {
return 0.0;
}
c = 2 * atan2(sqrt(a), sqrt(1 - a));
rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
/ 2.0));
rResult = rEarthRadius * c;
// Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns
if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
&& (rHeading2 < 360.0)) {
rDHeading = fabs(rHeading1 - rHeading2);
if (rDHeading > 180.0) {
rDHeading -= 180.0;
}
rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
if (rDHeading > 5.0) {
rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
} else {
rResult = rResult / cos(rDHeadingRad);
}
}
return rResult;
}
II. There is an easier way which gives pretty good results.
By Average Speed.
Trip_distance = Trip_average_speed * Trip_time
Since GPS Speed is detected by Doppler effect and is not directly related to [Lon,Lat] it can be at least considered as secondary (backup or correction) if not as main distance calculation method.

- 172
- 2
- 1
A T-SQL function, that I use to select records by distance for a center
Create Function [dbo].[DistanceInMiles]
( @fromLatitude float ,
@fromLongitude float ,
@toLatitude float,
@toLongitude float
)
returns float
AS
BEGIN
declare @distance float
select @distance = cast((3963 * ACOS(round(COS(RADIANS(90-@fromLatitude))*COS(RADIANS(90-@toLatitude))+
SIN(RADIANS(90-@fromLatitude))*SIN(RADIANS(90-@toLatitude))*COS(RADIANS(@fromLongitude-@toLongitude)),15))
)as float)
return round(@distance,1)
END

- 90,663
- 31
- 146
- 203

- 101
- 1
- 1
-
This is the "spherical law of cosines" calculation which is the least accurate and most error-prone method of calculation of a great circle distance. – John Machin Jan 11 '17 at 02:30
If you're using .NET don't reivent the wheel. See System.Device.Location. Credit to fnx in the comments in another answer.
using System.Device.Location;
double lat1 = 45.421527862548828D;
double long1 = -75.697189331054688D;
double lat2 = 53.64135D;
double long2 = -113.59273D;
GeoCoordinate geo1 = new GeoCoordinate(lat1, long1);
GeoCoordinate geo2 = new GeoCoordinate(lat2, long2);
double distance = geo1.GetDistanceTo(geo2);

- 1
- 1

- 3,365
- 1
- 42
- 52
If you need something more accurate then have a look at this.
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a) They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods such as great-circle distance which assume a spherical Earth.
The first (direct) method computes the location of a point which is a given distance and azimuth (direction) from another point. The second (inverse) method computes the geographical distance and azimuth between two given points. They have been widely used in geodesy because they are accurate to within 0.5 mm (0.020″) on the Earth ellipsoid.
here is the Swift implementation from the answer
func degreesToRadians(degrees: Double) -> Double {
return degrees * Double.pi / 180
}
func distanceInKmBetweenEarthCoordinates(lat1: Double, lon1: Double, lat2: Double, lon2: Double) -> Double {
let earthRadiusKm: Double = 6371
let dLat = degreesToRadians(degrees: lat2 - lat1)
let dLon = degreesToRadians(degrees: lon2 - lon1)
let lat1 = degreesToRadians(degrees: lat1)
let lat2 = degreesToRadians(degrees: lat2)
let a = sin(dLat/2) * sin(dLat/2) +
sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2)
let c = 2 * atan2(sqrt(a), sqrt(1 - a))
return earthRadiusKm * c
}

- 685
- 6
- 14
This is version from "Henry Vilinskiy" adapted for MySQL and Kilometers:
CREATE FUNCTION `CalculateDistanceInKm`(
fromLatitude float,
fromLongitude float,
toLatitude float,
toLongitude float
) RETURNS float
BEGIN
declare distance float;
select
6367 * ACOS(
round(
COS(RADIANS(90-fromLatitude)) *
COS(RADIANS(90-toLatitude)) +
SIN(RADIANS(90-fromLatitude)) *
SIN(RADIANS(90-toLatitude)) *
COS(RADIANS(fromLongitude-toLongitude))
,15)
)
into distance;
return round(distance,3);
END;

- 193
- 3
- 9
-
`MySQL` said `Something is wrong in your syntax near '' on line 8` `// declare distance float;` – Legionar Dec 02 '14 at 13:37
-
This is the "spherical law of cosines" calculation which is the least accurate and most error-prone method of calculation of a great circle distance – John Machin Jan 11 '17 at 02:30
This Lua code is adapted from stuff found on Wikipedia and in Robert Lipe's GPSbabel tool:
local EARTH_RAD = 6378137.0
-- earth's radius in meters (official geoid datum, not 20,000km / pi)
local radmiles = EARTH_RAD*100.0/2.54/12.0/5280.0;
-- earth's radius in miles
local multipliers = {
radians = 1, miles = radmiles, mi = radmiles, feet = radmiles * 5280,
meters = EARTH_RAD, m = EARTH_RAD, km = EARTH_RAD / 1000,
degrees = 360 / (2 * math.pi), min = 60 * 360 / (2 * math.pi)
}
function gcdist(pt1, pt2, units) -- return distance in radians or given units
--- this formula works best for points close together or antipodal
--- rounding error strikes when distance is one-quarter Earth's circumference
--- (ref: wikipedia Great-circle distance)
if not pt1.radians then pt1 = rad(pt1) end
if not pt2.radians then pt2 = rad(pt2) end
local sdlat = sin((pt1.lat - pt2.lat) / 2.0);
local sdlon = sin((pt1.lon - pt2.lon) / 2.0);
local res = sqrt(sdlat * sdlat + cos(pt1.lat) * cos(pt2.lat) * sdlon * sdlon);
res = res > 1 and 1 or res < -1 and -1 or res
res = 2 * asin(res);
if units then return res * assert(multipliers[units])
else return res
end
end

- 198,648
- 61
- 360
- 533
private double deg2rad(double deg)
{
return (deg * Math.PI / 180.0);
}
private double rad2deg(double rad)
{
return (rad / Math.PI * 180.0);
}
private double GetDistance(double lat1, double lon1, double lat2, double lon2)
{
//code for Distance in Kilo Meter
double theta = lon1 - lon2;
double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
dist = Math.Abs(Math.Round(rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344 * 1000, 0));
return (dist);
}
private double GetDirection(double lat1, double lon1, double lat2, double lon2)
{
//code for Direction in Degrees
double dlat = deg2rad(lat1) - deg2rad(lat2);
double dlon = deg2rad(lon1) - deg2rad(lon2);
double y = Math.Sin(dlon) * Math.Cos(lat2);
double x = Math.Cos(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) - Math.Sin(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(dlon);
double direct = Math.Round(rad2deg(Math.Atan2(y, x)), 0);
if (direct < 0)
direct = direct + 360;
return (direct);
}
private double GetSpeed(double lat1, double lon1, double lat2, double lon2, DateTime CurTime, DateTime PrevTime)
{
//code for speed in Kilo Meter/Hour
TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
double TimeDifferenceInSeconds = Math.Round(TimeDifference.TotalSeconds, 0);
double theta = lon1 - lon2;
double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
dist = rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344;
double Speed = Math.Abs(Math.Round((dist / Math.Abs(TimeDifferenceInSeconds)) * 60 * 60, 0));
return (Speed);
}
private double GetDuration(DateTime CurTime, DateTime PrevTime)
{
//code for speed in Kilo Meter/Hour
TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
double TimeDifferenceInSeconds = Math.Abs(Math.Round(TimeDifference.TotalSeconds, 0));
return (TimeDifferenceInSeconds);
}

- 41
- 1
i took the top answer and used it in a Scala program
import java.lang.Math.{atan2, cos, sin, sqrt}
def latLonDistance(lat1: Double, lon1: Double)(lat2: Double, lon2: Double): Double = {
val earthRadiusKm = 6371
val dLat = (lat2 - lat1).toRadians
val dLon = (lon2 - lon1).toRadians
val latRad1 = lat1.toRadians
val latRad2 = lat2.toRadians
val a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(latRad1) * cos(latRad2)
val c = 2 * atan2(sqrt(a), sqrt(1 - a))
earthRadiusKm * c
}
i curried the function in order to be able to easily produce functions that have one of the two locations fixed and require only a pair of lat/lon to produce distance.

- 20,434
- 21
- 120
- 152
Here's a Kotlin variation:
import kotlin.math.*
class HaversineAlgorithm {
companion object {
private const val MEAN_EARTH_RADIUS = 6371.008
private const val D2R = Math.PI / 180.0
}
private fun haversineInKm(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double {
val lonDiff = (lon2 - lon1) * D2R
val latDiff = (lat2 - lat1) * D2R
val latSin = sin(latDiff / 2.0)
val lonSin = sin(lonDiff / 2.0)
val a = latSin * latSin + (cos(lat1 * D2R) * cos(lat2 * D2R) * lonSin * lonSin)
val c = 2.0 * atan2(sqrt(a), sqrt(1.0 - a))
return MEAN_EARTH_RADIUS * c
}
}

- 10,021
- 5
- 75
- 121
-
-
@user13044086 Good question. It's because I derived this from Paulo Miguel Almeida's Java version. Looks like the C# version is also using that distance. Other versions here have 6371, but then you have to realize that all these algorithms may not perfectly handle the Earth's geoid shape. Feel free to modify this and use 6371. If you tell me that leads to more precise values I'll change my answer. – Csaba Toth May 25 '20 at 06:34
-
16371.008 is commonly used because it minimizes relative error of the formula as explained in notes on page https://www.movable-type.co.uk/scripts/latlong.html#ellipsoid – fdermishin May 25 '20 at 07:20
-
@user13044086 Thanks for the link, I edited my answer a while ago based on that – Csaba Toth Jun 08 '20 at 00:45
I needed to implement this in PowerShell, hope it can help someone else. Some notes about this method
- Don't split any of the lines or the calculation will be wrong
- To calculate in KM remove the * 1000 in the calculation of $distance
- Change $earthsRadius = 3963.19059 and remove * 1000 in the calculation of $distance the to calulate the distance in miles
I'm using Haversine, as other posts have pointed out Vincenty's formulae is much more accurate
Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2) { $Rad = ([math]::PI / 180); $earthsRadius = 6378.1370 # Earth's Radius in KM $dLat = ($latitude2 - $latitude1) * $Rad $dLon = ($longitude2 - $longitude1) * $Rad $latitude1 = $latitude1 * $Rad $latitude2 = $latitude2 * $Rad $a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin($dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2) $c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a)) $distance = [math]::Round($earthsRadius * $c * 1000, 0) #Multiple by 1000 to get metres Return $distance }

- 2,253
- 2
- 25
- 34
Scala version
def deg2rad(deg: Double) = deg * Math.PI / 180.0
def rad2deg(rad: Double) = rad / Math.PI * 180.0
def getDistanceMeters(lat1: Double, lon1: Double, lat2: Double, lon2: Double) = {
val theta = lon1 - lon2
val dist = Math.sin(deg2rad(lat1)) * Math.sin(deg2rad(lat2)) + Math.cos(deg2rad(lat1)) *
Math.cos(deg2rad(lat2)) * Math.cos(deg2rad(theta))
Math.abs(
Math.round(
rad2deg(Math.acos(dist)) * 60 * 1.1515 * 1.609344 * 1000)
)
}

- 7,111
- 3
- 43
- 52
Here's my implementation in Elixir
defmodule Geo do
@earth_radius_km 6371
@earth_radius_sm 3958.748
@earth_radius_nm 3440.065
@feet_per_sm 5280
@d2r :math.pi / 180
def deg_to_rad(deg), do: deg * @d2r
def great_circle_distance(p1, p2, :km), do: haversine(p1, p2) * @earth_radius_km
def great_circle_distance(p1, p2, :sm), do: haversine(p1, p2) * @earth_radius_sm
def great_circle_distance(p1, p2, :nm), do: haversine(p1, p2) * @earth_radius_nm
def great_circle_distance(p1, p2, :m), do: great_circle_distance(p1, p2, :km) * 1000
def great_circle_distance(p1, p2, :ft), do: great_circle_distance(p1, p2, :sm) * @feet_per_sm
@doc """
Calculate the [Haversine](https://en.wikipedia.org/wiki/Haversine_formula)
distance between two coordinates. Result is in radians. This result can be
multiplied by the sphere's radius in any unit to get the distance in that unit.
For example, multiple the result of this function by the Earth's radius in
kilometres and you get the distance between the two given points in kilometres.
"""
def haversine({lat1, lon1}, {lat2, lon2}) do
dlat = deg_to_rad(lat2 - lat1)
dlon = deg_to_rad(lon2 - lon1)
radlat1 = deg_to_rad(lat1)
radlat2 = deg_to_rad(lat2)
a = :math.pow(:math.sin(dlat / 2), 2) +
:math.pow(:math.sin(dlon / 2), 2) *
:math.cos(radlat1) * :math.cos(radlat2)
2 * :math.atan2(:math.sqrt(a), :math.sqrt(1 - a))
end
end

- 2,403
- 1
- 22
- 29
Dart Version
Haversine Algorithm.
import 'dart:math';
class GeoUtils {
static double _degreesToRadians(degrees) {
return degrees * pi / 180;
}
static double distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
var earthRadiusKm = 6371;
var dLat = _degreesToRadians(lat2-lat1);
var dLon = _degreesToRadians(lon2-lon1);
lat1 = _degreesToRadians(lat1);
lat2 = _degreesToRadians(lat2);
var a = sin(dLat/2) * sin(dLat/2) +
sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2);
var c = 2 * atan2(sqrt(a), sqrt(1-a));
return earthRadiusKm * c;
}
}

- 170
- 1
- 6
In Python, you can use the geopy library to compute the geodesic distance using the WGS84 ellipsoid:
from geopy.distance import geodesic
newport_ri = (41.49008, -71.312796)
cleveland_oh = (41.499498, -81.695391)
print(geodesic(newport_ri, cleveland_oh).km)

- 71
- 1
- 6
you can find a implementation of this (with some good explanation) in F# on fssnip
here are the important parts:
let GreatCircleDistance<[<Measure>] 'u> (R : float<'u>) (p1 : Location) (p2 : Location) =
let degToRad (x : float<deg>) = System.Math.PI * x / 180.0<deg/rad>
let sq x = x * x
// take the sin of the half and square the result
let sinSqHf (a : float<rad>) = (System.Math.Sin >> sq) (a / 2.0<rad>)
let cos (a : float<deg>) = System.Math.Cos (degToRad a / 1.0<rad>)
let dLat = (p2.Latitude - p1.Latitude) |> degToRad
let dLon = (p2.Longitude - p1.Longitude) |> degToRad
let a = sinSqHf dLat + cos p1.Latitude * cos p2.Latitude * sinSqHf dLon
let c = 2.0 * System.Math.Atan2(System.Math.Sqrt(a), System.Math.Sqrt(1.0-a))
R * c

- 51,810
- 9
- 92
- 119
TypeScript Version
export const degreeToRadian = (degree: number) => {
return degree * Math.PI / 180;
}
export const distanceBetweenEarthCoordinatesInKm = (lat1: number, lon1: number, lat2: number, lon2: number) => {
const earthRadiusInKm = 6371;
const dLat = degreeToRadian(lat2 - lat1);
const dLon = degreeToRadian(lon2 - lon1);
lat1 = degreeToRadian(lat1);
lat2 = degreeToRadian(lat2);
const a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.sin(dLon / 2) * Math.sin(dLon / 2) * Math.cos(lat1) * Math.cos(lat2);
const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return earthRadiusInKm * c;
}

- 471
- 4
- 14
I think a version of the algorithm in R is still missing:
gpsdistance<-function(lat1,lon1,lat2,lon2){
# internal function to change deg to rad
degreesToRadians<- function (degrees) {
return (degrees * pi / 180)
}
R<-6371e3 #radius of Earth in meters
phi1<-degreesToRadians(lat1) # latitude 1
phi2<-degreesToRadians(lat2) # latitude 2
lambda1<-degreesToRadians(lon1) # longitude 1
lambda2<-degreesToRadians(lon2) # longitude 2
delta_phi<-phi1-phi2 # latitude-distance
delta_lambda<-lambda1-lambda2 # longitude-distance
a<-sin(delta_phi/2)*sin(delta_phi/2)+
cos(phi1)*cos(phi2)*sin(delta_lambda/2)*
sin(delta_lambda/2)
cc<-2*atan2(sqrt(a),sqrt(1-a))
distance<- R * cc
return(distance) # in meters
}

- 239
- 2
- 8
For java
public static double degreesToRadians(double degrees) {
return degrees * Math.PI / 180;
}
public static double distanceInKmBetweenEarthCoordinates(Location location1, Location location2) {
double earthRadiusKm = 6371;
double dLat = degreesToRadians(location2.getLatitude()-location1.getLatitude());
double dLon = degreesToRadians(location2.getLongitude()-location1.getLongitude());
double lat1 = degreesToRadians(location1.getLatitude());
double lat2 = degreesToRadians(location2.getLatitude());
double a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadiusKm * c;
}

- 2,488
- 2
- 17
- 35
For anyone searching for a Delphi/Pascal version:
function GreatCircleDistance(const Lat1, Long1, Lat2, Long2: Double): Double;
var
Lat1Rad, Long1Rad, Lat2Rad, Long2Rad: Double;
const
EARTH_RADIUS_KM = 6378;
begin
Lat1Rad := DegToRad(Lat1);
Long1Rad := DegToRad(Long1);
Lat2Rad := DegToRad(Lat2);
Long2Rad := DegToRad(Long2);
Result := EARTH_RADIUS_KM * ArcCos(Cos(Lat1Rad) * Cos(Lat2Rad) * Cos(Long1Rad - Long2Rad) + Sin(Lat1Rad) * Sin(Lat2Rad));
end;
I take no credit for this code, I originally found it posted by Gary William on a public forum.

- 803
- 7
- 23
Unity Version C#
Haversine Algorithm.
public float Distance(float lat1, float lon1, float lat2, float lon2)
{
var earthRadiusKm = 6371;
var dLat = (lat2 - lat1) * Mathf.Rad2Deg;
var dLon = (lon2 - lon1) * Mathf.Rad2Deg;
var a = Mathf.Sin(dLat / 2) * Mathf.Sin(dLat / 2) +
Mathf.Sin(dLon / 2) * Mathf.Sin(dLon / 2) *
Mathf.Cos(lat1 * Mathf.Rad2Deg) * Mathf.Cos(lat2 * Mathf.Rad2Deg);
var c = 2 * Mathf.Atan2(Mathf.Sqrt(a), Mathf.Sqrt(1 - a));
return earthRadiusKm * c;
}

- 43
- 2
- 8