Here you go :
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.util.StatCounter;
import scala.Tuple2;
import scala.Tuple3;
import java.util.Arrays;
import java.util.List;
public class AggregateByKeyStatCounter {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("AggregateByKeyStatCounter").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> myList = Arrays.asList(new Tuple2<>("A", 8), new Tuple2<>("B", 3), new Tuple2<>("C", 5),
new Tuple2<>("A", 2), new Tuple2<>("B", 8));
JavaRDD<Tuple2<String, Integer>> data = sc.parallelize(myList);
JavaPairRDD<String, Integer> pairs = JavaPairRDD.fromJavaRDD(data);
/* I'm actually using aggregateByKey to perform StatCounter
aggregation, so actually you can even have more statistics available */
JavaRDD<Tuple3<String, Double, Double>> output = pairs
.aggregateByKey(
new StatCounter(),
StatCounter::merge,
StatCounter::merge)
.map(x -> new Tuple3<String, Double, Double>(x._1(), x._2().stdev(), x._2().mean()));
output.collect().forEach(System.out::println);
}
}