117

I tried to parse an XML file to an R data frame. This link helped me a lot:

How to create an R data frame from an xml file?

But still I was not able to figure out my problem. Here is my code:

data <- xmlParse("http://forecast.weather.gov/MapClick.php?lat=29.803&lon=-82.411&FcstType=digitalDWML")
xmlToDataFrame(nodes=getNodeSet(data1,"//data"))[c("location","time-layout")]
step1 <- xmlToDataFrame(nodes=getNodeSet(data1,"//location/point"))[c("latitude","longitude")]
step2 <- xmlToDataFrame(nodes=getNodeSet(data1,"//time-layout/start-valid-time"))
step3 <- xmlToDataFrame(nodes=getNodeSet(data1,"//parameters/temperature"))[c("type="hourly"")]

The data frame I want to have is like this:

latitude  longitude   start-valid-time   hourly_temperature
29.803     -82.411  2013-06-19T15:00:00-04:00    91
29.803     -82.411  2013-06-19T16:00:00-04:00    90

I'm stuck at the xmlToDataFrame(), any help would be very much appreciated.

user438383
  • 5,716
  • 8
  • 28
  • 43
Rosa
  • 1,793
  • 5
  • 18
  • 23

4 Answers4

117

Data in XML format are rarely organized in a way that would allow the xmlToDataFrame function to work. You're better off extracting everything in lists and then binding the lists together in a data frame:

require(XML)
data <- xmlParse("http://forecast.weather.gov/MapClick.php?lat=29.803&lon=-82.411&FcstType=digitalDWML")

xml_data <- xmlToList(data)

In the case of your example data, getting location and start time is fairly straightforward:

location <- as.list(xml_data[["data"]][["location"]][["point"]])

start_time <- unlist(xml_data[["data"]][["time-layout"]][
    names(xml_data[["data"]][["time-layout"]]) == "start-valid-time"])

Temperature data is a bit more complicated. First you need to get to the node that contains the temperature lists. Then you need extract both the lists, look within each one, and pick the one that has "hourly" as one of its values. Then you need to select only that list but only keep the values that have the "value" label:

temps <- xml_data[["data"]][["parameters"]]
temps <- temps[names(temps) == "temperature"]
temps <- temps[sapply(temps, function(x) any(unlist(x) == "hourly"))]
temps <- unlist(temps[[1]][sapply(temps, names) == "value"])

out <- data.frame(
  as.list(location),
  "start_valid_time" = start_time,
  "hourly_temperature" = temps)

head(out)
  latitude longitude          start_valid_time hourly_temperature
1    29.81    -82.42 2013-06-19T16:00:00-04:00                 91
2    29.81    -82.42 2013-06-19T17:00:00-04:00                 90
3    29.81    -82.42 2013-06-19T18:00:00-04:00                 89
4    29.81    -82.42 2013-06-19T19:00:00-04:00                 85
5    29.81    -82.42 2013-06-19T20:00:00-04:00                 83
6    29.81    -82.42 2013-06-19T21:00:00-04:00                 80
SchaunW
  • 3,561
  • 1
  • 21
  • 21
106

Use xpath more directly for both performance and clarity.

time_path <- "//start-valid-time"
temp_path <- "//temperature[@type='hourly']/value"

df <- data.frame(
    latitude=data[["number(//point/@latitude)"]],
    longitude=data[["number(//point/@longitude)"]],
    start_valid_time=sapply(data[time_path], xmlValue),
    hourly_temperature=as.integer(sapply(data[temp_path], as, "integer"))

leading to

> head(df, 2)
  latitude longitude          start_valid_time hourly_temperature
1    29.81    -82.42 2014-02-14T18:00:00-05:00                 60
2    29.81    -82.42 2014-02-14T19:00:00-05:00                 55
Martin Morgan
  • 45,935
  • 7
  • 84
  • 112
  • 15
    This really ought to be the accepted answer. It's more concise and xpath has much better performance than iterating over lists. – SchaunW Sep 23 '14 at 13:09
  • 3
    Great answer. Note that the [W3schools](https://www.w3schools.com/xml/xpath_intro.asp) tutorial might be a better place to learn xpath than the official xpath page. – Laurent Bergé Aug 28 '20 at 11:22
  • 100% agree, this should be the accepted answer. Not only is the code simpler but also more readable. – krenz Feb 11 '22 at 14:13
55

Here's a partial solution using xml2. Breaking the solution up into smaller pieces generally makes it easier to ensure everything is lined up:

library(xml2)
data <- read_xml("http://forecast.weather.gov/MapClick.php?lat=29.803&lon=-82.411&FcstType=digitalDWML")

# Point locations
point <- data %>% xml_find_all("//point")
point %>% xml_attr("latitude") %>% as.numeric()
point %>% xml_attr("longitude") %>% as.numeric()

# Start time
data %>% 
  xml_find_all("//start-valid-time") %>% 
  xml_text()

# Temperature
data %>% 
  xml_find_all("//temperature[@type='hourly']/value") %>% 
  xml_text() %>% 
  as.integer()
hadley
  • 102,019
  • 32
  • 183
  • 245
  • 11
    Helpful answer. If anybody else stumbles across it, here's the link to a tutorial by Hadley on using xml2: https://blog.rstudio.com/2015/04/21/xml2/ – Richard Erickson Feb 01 '18 at 15:30
10

You can try the code below:

# Load the packages required to read XML files.
library("XML")
library("methods")

# Convert the input xml file to a data frame.
xmldataframe <- xmlToDataFrame("input.xml")
print(xmldataframe)