I love how easy dplyr
and tidyr
have made it to create a single summary table with multiple predictor and outcome variables. One thing that got me stumped was the final step of preserving/defining the order of the predictor variables, and their factor levels, in the output table.
I've come up with a solution of sorts (below), which involves using mutate
to manually make a factor variable that combines both the predictor and predictor value (eg. "gender_female") with levels in the desired output order. But my solution is a bit long winded if there are many variables, and I wonder if there is a better way?
library(dplyr)
library(tidyr)
levels_eth <- c("Maori", "Pacific", "Asian", "Other", "European", "Unknown")
levels_gnd <- c("Female", "Male", "Unknown")
set.seed(1234)
dat <- data.frame(
gender = factor(sample(levels_gnd, 100, replace = TRUE), levels = levels_gnd),
ethnicity = factor(sample(levels_eth, 100, replace = TRUE), levels = levels_eth),
outcome1 = sample(c(TRUE, FALSE), 100, replace = TRUE),
outcome2 = sample(c(TRUE, FALSE), 100, replace = TRUE)
)
dat %>%
gather(key = outcome, value = outcome_value, contains("outcome")) %>%
gather(key = predictor, value = pred_value, gender, ethnicity) %>%
# Statement below creates variable for ordering output
mutate(
pred_ord = factor(interaction(predictor, addNA(pred_value), sep = "_"),
levels = c(paste("gender", levels(addNA(dat$gender)), sep = "_"),
paste("ethnicity", levels(addNA(dat$ethnicity)), sep = "_")))
) %>%
group_by(pred_ord, outcome) %>%
summarise(n = sum(outcome_value, na.rm = TRUE)) %>%
ungroup() %>%
spread(key = outcome, value = n) %>%
separate(pred_ord, c("Predictor", "Pred_value"))
Source: local data frame [9 x 4]
Predictor Pred_value outcome1 outcome2
(chr) (chr) (int) (int)
1 gender Female 25 27
2 gender Male 11 10
3 gender Unknown 12 15
4 ethnicity Maori 10 9
5 ethnicity Pacific 7 7
6 ethnicity Asian 6 12
7 ethnicity Other 10 9
8 ethnicity European 5 4
9 ethnicity Unknown 10 11
Warning message:
attributes are not identical across measure variables; they will be dropped
The table above is correct in that neither the Predictor nor Predictor values are resorted alphabetically.
EDIT
As requested, this is what is produced if the default ordering (alphabetical) is used. It makes sense in that when the factors are combined they are converted to a character variable and all attributes are dropped.
dat %>%
gather(key = outcome, value = outcome_value, contains("outcome")) %>%
gather(key = predictor, value = pred_value, gender, ethnicity) %>%
group_by(predictor, pred_value, outcome) %>%
summarise(n = sum(outcome_value, na.rm = TRUE)) %>%
spread(key = outcome, value = n)
Source: local data frame [9 x 4]
predictor pred_value outcome1 outcome2
(chr) (chr) (int) (int)
1 ethnicity Asian 6 12
2 ethnicity European 5 4
3 ethnicity Maori 10 9
4 ethnicity Other 10 9
5 ethnicity Pacific 7 7
6 ethnicity Unknown 10 11
7 gender Female 25 27
8 gender Male 11 10
9 gender Unknown 12 15
Warning message:
attributes are not identical across measure variables; they will be dropped