I have a system of two first order ODEs, which are nonlinear, and hence difficult to solve analytically in a closed form. I want to fit the numerical solution to this system of ODEs to a data set. My data set is for only one of the two variables that are part of the ODE system. How do I go about this? This didn't help because there's only one variable there.
My code which is currently leading to an error is:
import numpy as np
from scipy.integrate import odeint
from scipy.optimize import curve_fit
def f(y, t, a, b, g):
S, I = y # S, I are supposed to be my variables
Sdot = -a * S * I
Idot = (a - b) * S * I + (b - g - b * I) * I
dydt = [Sdot, Idot]
return dydt
def y(t, a, b, g, y0):
y = odeint(f, y0, t, args=(a, b, g))
return y.ravel()
I_data =[] # I have data only for I, not for S
file = open('./ratings_showdown.csv')
for e_raw in file.read().split('\r\n'):
try:
e=float(e_raw); I_data.append(e)
except ValueError:
continue
data_t = range(len(I_data))
popt, cov = curve_fit(y, data_t, I_data, [.05, 0.02, 0.01, [0.99,0.01]])
#want to fit I part of solution to data for variable I
#ERROR here, ValueError: setting an array element with a sequence
a_opt, b_opt, g_opt, y0_opt = popt
print("a = %g" % a_opt)
print("b = %g" % b_opt)
print("g = %g" % g_opt)
print("y0 = %g" % y0_opt)
import matplotlib.pyplot as plt
t = np.linspace(0, len(data_y), 2000)
plt.plot(data_t, data_y, '.',
t, y(t, a_opt, b_opt, g_opt, y0_opt), '-')
plt.gcf().set_size_inches(6, 4)
#plt.savefig('out.png', dpi=96) #to save the fit result
plt.show()